Indian Journal of Advances in Chemical Science

Synthesis, Crystal Structure Refinement, and Morphological Study of Bioactive Material: Strontium and Iron-Substituted Nano-Hydroxyapatite: $Ca_{10-x}M_x(PO_4)_6(OH)_2$ (M=Sr and Fe and $0 \le x \le 0.1$)

O. P. Shrivastava¹*, Ramesh C. Deka¹, Rashmi Chourasia² and Rasnadevi¹

¹Department of Chemical Science, Tezpur University, Tezpur, Assam, India, ²Department of Chemistry, Dr H.S. Gour University, Sagar, MP, India

ABSTRACT

Nano-hydroxyapatite (HA) is a bioactive and important material well known for several applications. Rietveld refinement and structural analysis of X-ray powder diffraction patterns have been investigated to understand the effect of Sr and Fe substitution on the structural properties of bioactive material $Ca_{10-x}M_x(PO_4)_6(OH)_2$ or $Ca_{5-x}M_x(PO_4)_3(OH)$ where M=Sr and Fe and x=0.05). The crystal chemistry of Sr- and Fe-substituted HA phases has been investigated using General Structure Analysis System programming. Sr- and Fe-substituted HA phases crystallize in the space group P 63/m; Z=2. Powder diffraction data have been subjected to Rietveld refinement to arrive at a satisfactory structural convergence of R-factors. The expected overall decrease of the lattice constants in the samples is explained in terms of local lattice distortions. The unit cell volume and polyhedral distortion increase with a rise in the size of loaded cation in the HA matrix. Scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray analysis provide evidence of Sr and Fe in the HA matrix.

Key words: Bioactive nanomaterial, Hydroxyapatite, X-ray diffraction, General structure analysis system, Structure refinement, Fourier transform infrared, Scanning and transmission electron microscopy.

1. BACKGROUND

Main mineral component of bones and teeth, calcium hydroxyapatite (HA), belongs to the apatite family. HA group of compounds appears of high interest in the field of biomaterials because they represent a compatible inorganic component of natural bones and can be directly bond to bones in vivo. HA is usually applied as bone filling material, but by introducing cations into this compound, new applications could be feasible. One of them is to use it as a drug delivery material due to its biocompatibility, degradation, and dissolution characteristics and non-toxic nature [1-8]. Localized hyperthermia shows a promise as a treatment modality for tumor eradication [9]. In recent years, HA has been investigated as magnetic material for cancer treatment. It is reported that heating cells up to 42–46°C result in the death of cancer cells and this can be done by releasing the magnetic nanoparticles with AC magnetic field. HA has several other applications in the medical and engineering fields, and its further modification is needed to meet the requirements of recent applications [10,11]. Other advantage of HA structure is its flexibility to the substitution of ions. The general chemical formula is $M_5(YO_4)_3X$ where M=monovalent cations (such as Na⁺ or K⁺) or divalent cations (such as Ca²⁺, Sr²⁺, Ba²⁺, Cd²⁺, Pb²⁺, Fe^{2+} , and Co^{2+}) or trivalent cations (such as Fe^{3+} and La^{3+}). X=OH, F, Cl, Br, or CO₃²⁻ and YO₄=PO₄, VO₄, SiO₄, and AsO₄ [11]. The hexagonal unit cell of HA contains ten cations distributed between two crystallographic sites: Four on type (1) sites and six on type (2) sites. Ca(1) ions are surrounded by nine oxygen atoms (three O(1), three O(2), and three O(3)). Ca(2) ions present are surrounded by six oxygen atoms such as one O(1), one O(2), four O(3), and one OH^{-1} ion. Literature reveals that the substitution of ions in the crystal structures of HA substantially affects its physical and biological properties. Various papers have been recently published on the continuous improvement of properties of HA focusing on limitations to load-bearing applications on physical properties [12]. Li *et al.* reported the synthesis and cytocompatibility of Mn- and Fe-doped HA nanoparticles [13]. The application of HA depends on the crystal shape, size, morphology, crystallinity, thermal stability, and solubility, all of which are strongly influenced by the fabrication route [14]. Thus, the present communication aims to investigate the structure of hydrothermally synthesized Sr- and Fe-modified calcium HA nanophases through quantification of crystal data.

2. METHODS

2.1. Hydrothermal Synthesis of $Ca_{5-x}M_x(PO_4)_3OH(M=Sr and Fe and x=0.05)$ Phases

Synthesis of unsubstituted hydroxyy apatite and Sr and Fe substituted hydroxy apatite nanophases: Apatites were synthesized by dropwise addition of aqueous solution of dipotassium hydrogen phosphate (KH₂PO₄) to a solution of calcium nitrate (Ca(NO₃)₂.4H₂O). Stoichiometric quantities of the starting materials have been dissolved in minimum amount of water to keep the Ca:P ratio 1.67 in case of pure HA. In case of strontium- and iron-substituted HA, appropriate quantity of solution of strontium nitrate and ferrous ammonium sulfate was added to keep strontium and iron at x=0.05 and overall molar ratio Ca+M/P=1.67 (M=Sr and Fe). The pH was maintained at

*Corresponding author: E-mail: dr ops11@rediffmail.com

ISSN NO: 2320-0898 (p); 2320-0928 (e) **DOI:** 10.22607/IJACS.2019.701001

Received: 24th December 2018; **Accepted:** 10th January 2019 9.4 by continuous dropwise addition of ammonia solution. The entire precipitate was transferred to a 50 ml Teflon lined par vessel which was heated in an oven at 180°C for 72 h. After this period, the entire content was taken out, filtered, and washed several times to remove the unreacted reactants if any. The phase pure product was dried at 120°C, powdered, and analyzed by X-ray powder diffraction.

2.2. Characterization

Powder XRD spectra were recorded at room temperature, on a substituted Pan analytical diffractometer (Xpert-Pro) machine using Cu K α =1.5406 Å radiation source operating at 40 kV and 30 mA. The diffraction patterns were collected over a 2 θ , ranging from 10° to 90° with an incremental step size of 0.02 using flat plane geometry. The acquisition time was set at 2 s for each scan. The recorded powder XRD data were then used in subsequent modeling

Table 1: Crystallographic data for $Ca_{5-x}M_x(PO_4)_3OH$ (M=Sr, Fe, and x=0.05) at room temperature.

Structure: Hexagonal; space group; P 63/m; Z=2									
Parameters	Sr	Fe							
Lattice constants									
a=b	9.41557 (33)	9.40749 (10)							
с	6.87647 (23)	6.87157 (11)							
α=β=90°, γ=120°									
Rp	0.0430	0.0554							
Rwp	0.0586	0.0806							
R _{expected}	0.0387	0.0425							
RF ²	0.06671	0.07508							
Volume of unit cell (Å ³)	527.947 (30)	526.665 (10)							
S (GoF)	1.522	1.91							
Unit cell formula weight	1009.388	1006.211							
Density-ray	3.175 g/cm ³	3.173 g/cm ³							
		$(2)^{2}$							

$$R_{p} = \frac{\sum y_{i}(obs) - y_{1}(cal)}{\sum y_{i}(Obs)} R_{wp} = \left\{ \frac{\sum w_{i}(y_{i}(obs)^{2} - y_{i}(cal))^{2}}{\sum w_{i}(y_{i}(obs))^{2}} \right\}^{2} R_{e}$$
$$= [(N - P) / \sum w_{i}Y_{oi}^{2}]^{1/2} S = R_{wp} / R_{exp}$$

 $y_{i(o)}$ and $y_{i(c)}$ are observed and calculated intensities at profile point i, respectively. w_i is a weight for each step i. N is the number of parameters refined

techniques. The microscope analysis started with scanning electron microscopy (SEM) with the aim to reveal the shape and the size of the synthesized particles. The samples were dispersed in water by means of an ultrasound bath and examined on a Zeiss SEM. A further structural analysis based on exploring the individual nanostructures was performed by TECNAI G2 20S (200KV) transmission electron microscopy (TEM) equipped with TIA (FEI imaging software), EMMENU4, EMTOOLS.

The sample was prepared by dispersing the powder in acetone using an ultrasonic bath and subsequently dropping the suspension on a lacey carbon film supported by a 300-mesh copper grid. Images were obtained with the aim of identifying the crystallographic orientations and the crystallinity of the single-crystal nanorods. Selected area electron diffraction (SAED) was also recorded and interlayer spaces were measured on different locations. Fouriertransform infrared (FTIR) spectroscopy was employed to determine the chemical functionality of Sr- and Fe-doped HA. The potassium bromide (KBr) disk technique was used for analysis using 2 mg of Sr and Fe HA powder compacted with 200 mg of KBr under hydraulic pressure. All the spectra were measured using Perkin Elmer (Spectrum Version 10.43) infrared spectrometer with a resolution of 4.00 cm⁻¹ at room temperature, which covers the wave number range of 4000–400 cm⁻¹ to evaluate the functional groups of the samples.

3. RESULTS AND DISCUSSION

3.1. Rietveld Refinement and Crystal Structure Modeling from Powder XRD Data

The intensities and positions of the diffraction pattern of the title phases matched fairly with the reported standard pattern of parent HA which gives several prominent reflections between $2\theta = 25.8$ and 60.0 (Figure 1) [15]. Sr- and Fe-substituted HAs crystallize in hexagonal system. The space group P63/m was chosen while checking the symmetry by the LEPAGE method using the CHECKCELL program [16]. The structure of the synthetic phases has been refined by Rietveld method [17] using General Structure Analysis System [18] software, which allows determination of crystal structure, refinement of atomic coordinates, site occupancies, and atomic displacement parameters as well as profile parameters (lattice constants, peak shape, peak height, instrument parameters, and background). The structure refinement leads to rather good fit between the experimental and calculated XRD patterns (Figure 2) and yields acceptable reliability factors: RF², Rp, and Rwp (Table 1) [19]. The final atomic coordinates and isotropic thermal parameters (Table 2), interatomic distances and polyhedral distortion index (Table 3), bond angles (Table 4),

Table 2: Refined atomic coordinates of Ca_{5-x}M_x(PO₄)₃OH (M=Sr, Fe, and x=0.05) sample at room temperature.

Atom	X	у	Z	Occupancy	U _{iso} (Å ²) (Sr)	U _{iso} (Å ²) (Fe)
Cal	0.33333	0.66667	0.0027	0.975	0.00825	0.00917
Fe	0.33333	0.66667	0.0027	0.025	0.00825	0.00917
Ca2	0.24556	0.99045	0.25	1.0	0.00825	0.00917
Р	0.39789	0.36805	0.25	1.0	0.0065	0.00852
01	0.32471	0.48617	0.25	1.0	0.02973	0.00852
O2	0.58721	0.45947	0.25	1.0	0.02973	0.01575
O3	0.34094	0.25385	0.06994	1.0	0.02973	0.01575
O4	0.0	0.0	0.25	1.0	0.02973	0.01575
Н	0.0	0.0	0.0	1.0	0.48304	0.05683

Uiso: Isotropic thermal parameter

Figure 1: Powder X-ray diffraction pattern of $Ca_5-xMx(PO_4)_3OH(M=Sr, Fe and x=0.05)$ samples along with their prominent reflections.

Figure 2: Rietveld refinement patterns of (a) $Ca_{4.95}Sr_{0.05}(PO_4)_3OH$ (b) $Ca_{4.95}Fe_{0.05}(PO_4)_3OH$ compounds. The 'x' are the raw X-ray diffraction data, and the overlapping continuous line is the calculated pattern. The curve at the bottom is the difference in the observed and calculated intensities in the same scale.

h, k, l planes, d-spacing, and intensity data along with observed and calculated structure factors (Appendix 1) have been reported in this communication. Figures 3a and b illustrate the DIAMOND projection of three-dimensional balls and stick structure of the proposed model of the materials showing the position and interconnectivity of PO₄ tetrahedrons and Ca(1)O₉/SrO₉/FeO₉ and Ca(2)O₇ polyhedrons. Figure 4 shows the PLATON projection of the molecular structure depicting the interlinking of Ca(1)O₉, Ca(1)O₇, and PO₄ through a

bridge oxygen atom. Crystallite size along prominent reflecting planes for Sr- and Fe-substituted HA phases has been determined using the Scherrer's equation [20]. The size varies between 9 and 101 nm (Table 5).

3.2. Microstructure Analysis

The surface morphology of Fe-HA specimen has been investigated by SEM. The polycrystalline powder aggregated into flaky agglomerates

Table 3: Interatomic bond distances (Å) and polyhedral distortion (Δ) in polycrystalline Ca_{5-x}M_x(PO₄)₃OH (M=Sr, Fe, and x=0.05) phases.

Bond-distance	Sr	Fe
Ca(1)/Fe–O(1)	2.37673(6)	2.374870(20)
Ca(1)/Fe-O(2)	2.37670(6)	2.374870(20)
Ca(1)/Fe-O(3)	2.37667(6)	2.374870(20)
	2.42449(6)	2.422590(20)
	2.42455(6)	2.422590(20)
	2.42450(6)	2.422590(20)
	2.81434(9)	2.811930(30)
	2.81424(9)	2.811930(30)
	2.81431(9)	2.811930(30)
Ca(2)-O(1)	2.66136(9)	2.659070(30)
Ca(2) - O(2)	2.40714(8)	2.405070(30)
Ca(2)–O(3)	2.50261(7)*2	2.500550(20)*2
Ca(2)–O(3)	2.33160(7)*2	2.329900(30)*2
Ca(2)–O(4)	2.35833(8)	2.356310(30)
P(1)-O(1)	1.57417(5)	1.572790(20)
P(1)-O(2)	1.54404(5)	1.542720(20)
P(1)-O(3)	1.54926(4)	1.548090(20)
P(1)-O(3)	1.54927(4)	1.548090(20)
Polyhedral distortion (Δ)		
$Ca(1)O_9$	8.0×10^{-3}	15×10^{-3}
$Ca(2)O_7$	51.3×10^{-4}	51.5×10^{-4}
PO ₄	8.85×10^{-5}	8.78×10^{-5}

 $\Delta = 1/n\Sigma \{(Ri-Rm)/(Rm)\}2$ where n=4, 7, and 9 for four, seven, and nine coordination, respectively

with grains of size 100-200 nm (Figure 5a). The compositional distributions in the grains and grain boundaries of Fe-HA have been measured by energy-dispersive X-ray (EDAX) analysis. The EDAX spectrum shows that Fe enters crystallo-chemically in the HA matrix (Figure 5b). The crystallographic planes and ordered arrangement of atoms in Sr-HA and Fe-HA are visible in the TEM image. In TEM, Sr-HA phase was observed in the form of needle-shaped nanorods (Figures 6a-c). To determine the particle size of the powder, measurements were taken along the length and width of several particles and the average of these measurements was calculated. The particle size of the powder was found to be distributed in the range 12-139 nm, while Fe-HA was observed in the form of spherical geometry with particles of 86-101 nanodimensions (Figures 7a-c). Simultaneously, the crystallite size was also determined using Scherrer's equation, where the broadening of a peak is expressed as full width at half maxima in the recorded XRD pattern. The results were found to be in line with the TEM investigations (Table 5). The SAED pattern (Figures 6d and 7d) of the Sr- and Fe-substituted HA nanopowders shows concentric rings in the diffraction pattern, which confirms the polycrystalline nature of the phases. Crystallographic planes and ordered arrangement of atoms are visible in the electron microscopy images.

3.3. FTIR Analysis

FTIR scanning spectra of Sr-HA and Fe-HA systems prepared by hydrothermal route are found to be very similar to those found in the literature [21-23]. Evolutions of these well-developed peaks indicate good crystallinity after hydrothermal treatment. Both the samples show bands corresponding to HA, which are confirmed by FTIR spectra. The characteristic bands for PO₄₃₋ appear at 470, 568, 602, 964, 1041, and 1093 cm⁻¹ [24-26]. The sharp peaks located at 3571 cm⁻¹ and 632 cm⁻¹ correspond to the structural stretching vibration and deformation mode of OH, respectively. The strong doublet band or shoulder at **Table 4:** O-M-O bond angles (deg.) of polycrystalline $Ca_{5-x}M_x(PO_4)_3OH$ (M=Sr, Fe and x=0.05) sample.

0-M-0	М
Bond angles	
	Sr
O1-Ca1-O1	74.4589 (22), 74.4583 (22), 74.4595 (22)
O1-Ca1-O2	155.7427 (6), 123.7519 (15), 94.0793 (27), 94.0804 (27), 155.7398 (6), 123.7558 (15)
O1-Ca1-O3	141.9990 (8), 68.4565 (14), 87.7200 (8)
O2-Ca1-O2	74.3046 (22), 74.3046 (22), 74.3044 (22)
O2-Ca1-O3	56.00590 (20), 123.4102 (18), 68.08800 (20)*2,56.00770 (20)
O3-Ca1-O3	116.92040 (30), 116.91830 (30), 116.92130 (30)
O1-Ca2-O2	102.6466
O1-Ca2-O3	149.7958 (12), 71.8651 (8)*2,149.7959 (12)
O1-Ca2-O4	106.9602
O2-Ca2-O3	73.84950 (20)*2,87.58580 (10)*2,
O2-Ca2-O4	150.3932
O3-Ca2-O3	136.5137 (4)*2,77.9863 (20)* 2,59.3071 (24),141.3246 (17)
O3-Ca2-O4	80.50800 (10)*2,101.4721 (5)*2
	Fe
O1-Ca1-O1	74.4518 (9)*3, 74.4530 (9)
O1-Ca1-O2	123.7579 (6)*, 94.0851 (11), 155.74020 (30), 155.74451 (30), 123.7565 (6), 94.0873 (11) 94.0884 (11), 155.74170 (30), 123.7604 (6),
O1-Ca1-O3	87.72040 (30), 141.99831 (30), 68.4586 (6), 68.4585 (6), 87.72310 (30), 141.99609 (30) 141.99660 (30), 68.4606 (6), 87.72230 (30)
O2-Ca1-O2	74.2981 (9), 74.2990 (9), 74.2979 (9)
O2-Ca1-O3	123.4046 (8), 68.08940 (10), 56.00730 (10), 56.00640 (10),123.4059 (8), 68.08750 (10), 68.08770 (10), 56.00820 (10), 123.4053 (8),116.91960 (10),116.91750 (10), 116.92040 (10)
O1-Ca2-O2	102.6466
O1-Ca2-O3	149.7923 (5)*2, 71.86760 (30)*2
O1-Ca2-O4	106.9602, 150.3932
O2-Ca2-O3	73.85010 (10)*2, 87.5861*2
O3-Ca2-O3	136.51500 (20)*2, 77.9803 (8)*2, 141.3298 (7)
O3-Ca2-O4	80.5083*2, 101.47060 (20)*2
O1-P-O2	113.4091
O1-P-O3	111.62090 (30)*2
O2-P-O3	106.81880 (20)*2
O3-P-O3	106.1153 (11)

 960^{-1} -1100 cm⁻¹ was assigned to asymmetric P-O stretching and bending vibration of the phosphate group (PO₄₃.). The v₁ PO₄ stretch occurs at 961cm⁻¹, while v₂ and v₃ vibrations are observed at 1030 and 1090 cm⁻¹, respectively. The characteristic sharp bands at about 471-474 cm⁻¹ (weak) and 570-601cm⁻¹ (doublet) also represent PO₄₃₋ vibrations. A small band at around 1650 cm⁻¹ was possibly due to absorbed water (bending mode) which is absent in case of Fe-HA (Figure 8).

Figure 3: DIAMOND view of coordination sites of Ca, P and H in (a) Ca_{4.95}Sr_{0.05}(PO₄)₃OH and (b) Ca_{4.95}Fe_{0.05}(PO₄)₃OH compound respectively.

Figure 4: PLATON view of molecular structure of $Ca_{4.95}Fe_{0.05}(PO_4)_3OH$ compound showing Ca coordination in $Ca(1)O_9$ and P coordination in PO₄ polyhedron at 50% probability level.

Figure: 5a and 5b. Scanning electron micrograph (left) and EDAX spectrum (right) of Ca_{4.95}Fe_{0.05}(PO₄)₃OH powder.

Figure 6: (a) and (b) TEM images (c) High resolution TEM picture and (d) SAED image of Sr-HA showing fundamental reflections.

Figure 7: (a) and (b) TEM image of Fe-HA (c) HRTEM picture and (d) SAED image of Fe-HA showing fundamental reflections.

h k l	Crystallite size							
	(M=Sr)	(M=Fe)						
010	19.51	78.07						
011	26.17	62.83						
1 1 0	19.77	39.36						
020	26.41	79.14						
111	79.36	63.41						
0 0 2	28.98	63.71						
0 0 2	32.03	63.77						
012	32.09	64.08						
210	26.91	64.19						
121	29.45	53.84						
112	54.13	53.9						
030	16.3	54						
022	27.53	54.16						
031	55.28	65.08						
122, 212	27.91	54.37						
130, 10	24.05	55.07						
131, 311	21.25	82.81						
113	24.43	83.76						
0 23	28.7	42.08						
041, 222	28.82	84.63						
132	21.73	42.52						
230, 320	21.98	85.25						
213	22.11	85.55						
231, 321	22.41	85.9						
410	45.23	86.18						
42	22.78	86.47						
141, 411	20.37	86.89						
232	23.21	87.94						
114	13.51	44.21						
0 52	25.02	91.12						
0 34	20.77	26.18						
151	20.97	75.52						

Table 5: Distribution of crystallite size (nm) along prominentreflecting planes of Sr- and Fe-substituted HA sample.

Figure 8: FTIR spectrum of (a) Ca_{4.95}Sr_{0.05}(PO₄)₃OH and (b) Ca_{4.95}Fe_{0.05}(PO₄)₃OH powders respectively.

4. CONCLUSIONS

The paper investigates a detailed structural analysis of Fe-HA and Sr-HA nanocrystals synthesized by a combination of hydroxide gel and hydrothermal technique. The title phases crystallize in hexagonal symmetry at room temperature. The refinement plots represent a good structure fit between observed and calculated intensities with satisfactory R-factors. The cell volume and Ca-O, P-O bond distances resister a slight decrease with the substitution of Sr and Fe in the parent HA matrix. The bond distortion in CaO₉ polyhedral increases, respectively, on Sr and Fe ions loading, but overall matrix structure remains intact. The nanocrystalline nature has been ascertained by X-ray diffraction data and high-resolution TEM micrographs. The XRD and TEM results show that the nanoparticles consist of two different chemical environments in materials having different chemical structure and bonding parameters. Thus, alteration of dimensions of nanocrystals (size/shape effect) and incorporation of chemical species in crystal structure change the structure and properties of the material in a remarkable manner.

5. ACKNOWLEDGMENTS

Authors thank the Department of Biotechnology, Government of India, for the award of visiting research professorship to one of the authors (OPS). We gratefully acknowledge the institutional support of Tezpur University, Assam, India, for hosting the DBT project in the Department of Chemical Sciences.

6. REFERENCES

- A. Nakahira, S. Nakamura, M. Horimoto, (2007) Synthesis of modified hydroxyapatite substituted with Fe ion for DDS application, *IEEE Transaction on Magnetic*, 43: 2465-2467.
- W. Pon-On, S. Meejoo, I. Tang, (2007) Incorporation of iron in to nano hydroxyapatite particles synthesized by microwave process, *International Journal of Nanoscienc*, 6: 9-16.
- 3. R. Morrissey, L. M. Rodriguez-Lorenzo, K. A. Gross, (2005) Influence of ferrous iron incorporation on the structure of

hydroxyapatite, *Journal of Materials Science: Materials in Medicine*, **16(5)**: 387-392.

- H. K. H. Xu, L. E. Carey, S. Takagi, L. C. Chow, (2007) Premixed calcium phosphate cement: Synthesis, physical properties, and cell cytotoxicity, *Dental Materials*, 23: 433-441.
- J. Kalitas, A. Bhardwaj, H. A. Bhatt, (2007) Nano crystalline calcium phosphate ceramics in biomedical engineering, *Materials Science and Engineering C*, 27: 441-449.
- M. Okazaki, M. Taira, J. Takahashi, (1997) Rietveld analysis and Fourier maps of Hydroxyapatite, *Biomaterial*, 18: 795-799.
- R. LeGeros, (2002) Properties of osteo conductive biomaterials: Calcium phosphate, *Clinical Orthopaedics and Related Research*, 395: 81-98.
- R. LeGeros, S. Lin, R. Rohanizadeh, D. Mijares, J. LeGeros, (2003) Biphasic calcium phosphate bioceramics: Preparation, properties and applications, *Journal of Materials Science: Materials in Medicine*, 14: 201-209.
- K.A.Cross, R.Jackson, J.D.Cashion, L.M.Rodriguez-LorenzoL.M, (2002) Iron substituted hydroxyapatite: Are soursable biomaterial with potential magnetic properties, *European Cells and Material*, 3(2): 114-117.
- C. Hou, S. Hou, Y. Hsueh, J. Lin, H. Wu, F. Lin, (2009) The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy, *Biomaterials*, 30(23-24): 3956-3960.
- F. P. Filho, M. P. F. Graça, R. E. Q. Nogueira, M. A. Valente, (2008) Structural and mechanical study of the sintering effect in hydroxyapatite doped with iron oxide, *Physica B: Condensed Matter*, 403(19-20): 3826-3829.
- O. Kuda, N. Pinchuk, L. Ivanchenko, O. Parkhomey, O. Sych, M. Leonowicz, R. Wroblewski, (2009) Effect of Fe₃O₄, Fe and Cu doping on magnetic properties and behavior in physiological solution of biological hydroxyapatite/glass composites, *Journal* of *Materials Processing Technology*, 209(4): 1960-1964.
- 13. Y. Li, C. T. Nam, C. P. Ooi. (2009) Iron(III) and Mn(II) substituted hydroxyapatite nanoparticles: Characterization and cytotoxicity

analysis, Journal of Physics: Conference Series, 187: 1-8.

- 14. J. Pena, M. V. Regi, (2003) Hydroxy apatite, tricalcium phosphate and biphasic materials prepared by a liquid mix method, *Journal of the European Ceramic Society*, **23**: 1687-1696.
- 15. International Table of Crystallography, JCPDS-ICD Card Number 9-0432.
- J. Laugier, B. Bochu. Laboratoire des Materiauxet du Genie Physique Ecole Nationale Superieure de Physique de Grenoble (INPG), Saint Martin d'Heres, France: Domaine Universitaire, BP 46, p38402.
- 17. H. M. Rietveld, (1969) A profile refinement method for nuclear and magnetic structure, *Acta Crystallographica*, **2:** 65-71.
- A. C. Larson, R. B. Von Dreele, (2004) General Structure Analysis System (GSAS), LANSCE, MS-H805, Los Alamos National Laboratory Report LAUR, p. 86.
- H. Kojitani, M. Kido, M. Akaogi, (2005) Rietveld analysis of new high pressure strontium silicate SrSi₂O₅, *Physics and Chemistry* of *Minerals*, 32: 290.
- A. R. West, (2003) In: N. Shah, T. A. V. Ress, Eds. Solid State Chemistry and its Application. Singapore: John Willey and Sons, p710-715.
- 21. D. Gopi, S. Nithiya, E. Shinyjoy, L. Kavitha, (2012) Molecular

and biomolecular spectroscopy, *Spectrochimica Acta Part A*, **92:** 194.

- C. Yang, P. Yang, W. Wang, S. Gai, J. Wang, M. Zhang, J. Lin, (2009) Synthesis and characterization of Eu-doped hydroxyapatite through a microwave assisted microemulsion process, *Solid State Sciences*, 11: 1923.
- N. P. Jagadalea, P. P. Jagtap, S. R. Bamane, (2015) Synthesis, characterization and *in vitro* drug delivery of nanostructured Fedoped hydroxyapatite bioceramics, Pelagia Research Library, *Der Chemica Sinica*, 6(6): 28-36.
- K. M. T. Ereiba, A. G. Mostafa, G. A. Gamal, A. H. Said, (2013) *In vitro* study of iron doped hydroxyapatite, *Journal of Engineering and Computer Sciences*, 6(2): 131-144.
- 25. R. N. Panda, M. F. Hsieh, R. J. Chung, T S. Chin, (2003) FTIR, XRD, SEM and solid state NMR investigations of carbonate containing hydroxyapatite nano-particles synthesized by hydroxide gel technique, *Journal of Physics and Chemistry of Solids*, 64: 193-199.
- S. M. M. Arsad, M. L. Pat, (2011) In 2nd International Conference on Biotechnology and Food Science, Vol. 7. Singapore: IPCBEE, IACSIT Press.

*Bibliographical Sketch

Prof O. P. Shrivastava - MSc (Physical Chemistry), PhD, Publications: Over sixty, Positions-Ex visiting professor, department of Chemistry, Tezpur university Assam, Former-Head, department of Chemistry and Dean, School of Biological and Chemical Sciences, Dr H. S. Gour Central University, Sagar, India. Awarded one USSR patent on 'Solid State Sensor of Sulphur dioxide (SO₂) in air'. Life member of Indian Chemical Sciencity, Kolkata, Indian Science Congress Association, Kolkata, Indian Association of Solid State Chemists and Allied Scientist Jammu, Indian Association of nuclear Chemists and Allied Scientist, B.A.R.C. Bombay, India and Mineral Subcommittee International Centre for Diffraction Data (ICDD).

Intensity %

38.92

d-spacing

1.94231

APPENDIX

h

2

Appendix 1: (Continued)

l

k

2 2

F²obs

9674.917

F²calc

10394.930

Appendix 1: Selected h, k, and l values, observed and
calculated structure factors, d-spacing, and % intensity,
respectively, of $Ca_{5-x}M_x(PO_4)_3OH$ (M=Sr and Fe, x=0.05)
compounds. The reflection selected from the CIF output of the
final cycle of the refinement.

fina	final cycle of the refinement.						2	2	2	10054.169	10394.930	1.94231	20.05
h	k	1	F ² obs	F ² calc	d-spacing	Intensity %	3	1	2	1965.268	1936.647	1.88945	7.23
0	1	0	435.045	426.353	8.15412	20.06	3	1	2	1925.093	1936.647	1.88945	3.52
0	1	0	435.169	426.353	8.15412	9.98	1	3	2	3037.345	2984.127	1.88945	11.30
0	1	1	136.997	130.168	5.25677	4.82	1	3	2	2974.187	2984.127	1.88945	5.50
0	1	1	135.672	130.168	5.25677	2.38	2	3	0	2910.639	2847.544	1.87068	5.45
0	2	0	1123.935	1112.361	4.07706	12.69	2	3	0	2952.194	2847.544	1.87068	2.74
0	2	0	1113.307	1112.361	4.07706	6.26	4	1	0	3720.806	3666.877	1.77937	6.14
1	1	1	389.388	375.890	3.88463	7.49	4	1	0	3701.900	3666.877	1.77937	3.03
1	1	1	388.950	375.890	3.88463	3.72	2	1	3	9077.999	8790.069	1.83925	30.57
0	2	1	218.386	139.036	3.50699	3.32	1	2	3	3955.443	3815.665	1.83925	13.41
0	0	2	19042.123	19149.613	3.43825	44.13	2	1	3	9312.909	8790.069	1.83925	15.56
0	0	2	18560.584	19149.613	3.43825	21.41	1	2	3	4053.941	3815.665	1.83925	6.82
0	1	2	1078.272	1087.416	3.16812	13.17	3	2	1	3421.214	3404.714	1.80508	11.75
0	1	2	1089.197	1087.416	3.16812	6.61	3	2	1	3437.972	3404.714	1.80508	5.86
2	1	0	4021.999	3806.748	3.08197	24.86	2	3	1	3365.746	3350.683	1.80508	11.58
2	1	0	4042.060	3806.748	3.08197	12.42	2	3	1	3381.703	3350.683	1.80508	5.78
2	1	1	10209.219	10002.980	2.81242	100.00	0	4	2	5438.400	5591.778	1.75349	17.10
2	1	1	10196.819	10002.980	2.81242	49.66	0	4	2	5523.693	5591.778	1.75349	8.62
1	2	1	4218.806	4137.998	2.81242	41.53	1	4	0	5860.025	5816.128	1.77937	4.87
1	2	1	4214.370	4137.998	2.81242	20.63	1	4	0	5889.898	5816.128	1.77937	9.86
0	3	0	18754.512	18736.156	2.71804	86.50	0	0	4	38455.25	41985.33	1.71912	17.62
0	3	0	18603.479	18736.156	2.71804	42.68	0	0	4	39118.41	41985.33	1.71912	8.89
1	1	2	7043.617	6912.242	2.77659	64.82	3	2	2	2770.613	3490.944	1.64321	7.34
1	1	2	7044.343	6912.242	2.77659	32.23	3	2	2	2880.232	3490.944	1.64321	3.78
0	2	2	3725.718	3670.021	2.62839	29.29	1	3	3	1076.588	1058.250	1.60987	2.64
0	2	2	3708.557	3670.021	2.62839	14.50	3	1	3	1064.932	1046.958	1.60987	2.54
0	3	1	746.314	654.851	2.52774	5.53	4	1	2	936.351	842.141	1.58029	2.29
0	3	1	756.602	654.851	2.52774	2.79	2	4	0	5606.553	5589.755	1.54098	6.41
3	1	0	2269.162	2235.052	2.26155	6.74	2	4	0	5430.149	5589.755	1.54098	3.09
3	1	0	2263.719	2235.052	2.26155	3.34	3	3	1	2182.510	2206.426	1.52993	4.89
2	1	2	950.020	798.934	2.29494	5.31	3	3	1	2284.021	2206.426	1.52993	2.54
2	1	2	953.267	798.934	2.29494	2.65	5	1	0	2159.583	2097.072	1.46452	2.21
1	3	0	7784.671	7521.757	2.26155	22.48	2	4	1	2201.542	1925.661	1.50369	4.71
1	3	0	7764.129	7521.757	2.26155	11.14	1	2	4	1483.913	1265.358	1.50135	2.89
2	2	1	409.897	408.176	2.22703	2.40	0	5	2	6277.646	6364.546	1.47348	12.55
1	3	1	1035.589	1183.855	2.14834	5.54	2	4	1	2275.908	1925.661	1.50369	2.41
1	3	1	1076.301	1183.855	2.14834	2.86	0	5	2	6390.838	6364.546	1.47348	6.34
1	1	3	1399.997	1191.368	2.06087	5.99	2	1	4	1293.245	1092.732	1.50135	2.63
1	1	3	1334.636	1191.368	2.06087	2.84	5	1	1	5184.324	4975.537	1.43240	9.80
0	2	3	1161.562	1274.164	1.99804	4.62	0	3	4	6643.965	6641.734	1.45290	12.24
0	2	3	1183.352	1274.164	1.99804	2.34	5	1	1	5200.686	4975.537	1.43240	4.88
	_												

(Contd...)

(Contd...)

Appendix 1: (Continued)

Appendix 1: (Continued)

h	k	1	F ² obs	F ² calc	d-spacing	Intensity %	h	k	1	F ² obs	F ² calc	d-spacing	Intensity %
0	3	4	6676.644	6641.734	1.45290	6.11	0	1	2	1054.017	975.134	3.16579	7.12
3	2	3	3775.626	3756.668	1.44929	7.02	2	1	0	3414.995	3569.015	3.07932	21.48
3	2	3	3756.916	3756.668	1.44929	3.47	2	1	0	3330.473	3569.015	3.07932	10.44
3	3	2	1179.464	1130.688	1.42760	2.26	1	2	1	4026.697	4092.280	2.81007	41.29
5	2	0	4561.913	4795.311	1.30570	3.36	2	1	1	9803.173	9962.083	2.81007	100.00
4	3	1	3328.489	3257.480	1.31576	4.99	1	2	1	4008.881	4092.280	2.81007	20.45
4	3	1	3279.229	3257.480	1.31576	2.45	2	1	1	9759.818	9962.083	2.81007	49.52
5	2	1	1472.726	1386.734	1.28278	2.10	1	1	2	6555.602	6600.663	2.77446	66.66
2	4	3	3492.295	3219.994	1.27885	4.74	1	1	2	6711.165	6600.663	2.77446	33.89
2	4	3	3401.603	3219.994	1.27885	2.30	0	3	0	18786.037	18598.781	2.71571	88.43
0	6	2	1542.075	1399.601	1.26387	2.17	0	3	0	17721.723	18598.781	2.71571	41.61
2	1	5	4274.482	3625.513	1.25592	5.33	0	2	2	3505.443	3686.824	2.62635	30.37
1	2	5	1623.213	1377.640	1.25592	2.03	0	2	2	4203.476	3686.824	2.62635	18.02
2	1	5	4221.327	3625.513	1.25592	2.62	0	3	1	1064.481	714.428	2.52562	8.24
3	4	2	2209.300	1969.342	1.24896	2.88	0	3	1	1093.079	714.428	2.52562	4.21
5	1	3	3991.456	3963.727	1.23413	5.11	2	1	2	1265.005	877.000	2.29311	7.80
4	1	4	1901.637	1869.201	1.23636	2.36	2	1	2	1304.801	877.000	2.29311	4.00
1	4	4	4185.087	4116.251	1.23636	5.23	3	1	0	2314.313	2198.950	2.25961	7.17
1	4	4	4079.338	4116.251	1.23636	2.54	1	3	0	9136.101	8705.616	2.25961	27.62
2	5	2	5393.315	5474.792	1.22065	6.83	1	3	0	9046.035	8705.616	2.25961	13.60
2	5	2	5210.071	5474.792	1.22065	3.29	3	1	0	2288.032	2198.950	2.25961	3.53
4	4	0	4881.188	5206.495	1.17695	2.99	2	2	1	422.808	381.445	2.22515	2.62
4	3	3	4250.903	3810.132	1.15717	4.68	1	3	1	1264.119	1158.526	2.14653	7.13
4	3	3	4242.489	3810.132	1.15717	2.33	1	3	1	1175.183	1158.526	2.14653	3.31
2	4	4	3082.794	2600.164	1.14747	3.34	1	1	3	1303.924	1325.605	2.05934	6.56
5	1	4	3297.419	2677.689	1.11483	3.42	1	1	3	1152.500	1325.605	2.05934	2.89
1	1	6	5644.197	4458.083	1.11356	5.53	0	4	0	2136.789	631.288	2.03678	2.57
1	1	6	5143.675	4458.083	1.11356	2.53	0	2	3	999.939	1447.314	1.99654	4.70
2	3	5	2064.299	2008.379	1.10807	2.10	0	2	3	970.684	1447.314	1.99654	2.27
5	3	2	3173.287	3484.442	1.10327	3.41	2	2	2	9671.963	10418.844	1.94074	43.50
3	5	2	3186.396	3487.629	1.10327	3.44	2	2	2	10189.649	10418.844	1.94074	22.72
M=F	e						1	3	2	2795.737	2994.666	1.88791	11.74
0	1	0	398.131	395.339	8.14713	17.93	3	1	2	1872.144	2002.860	1.88791	7.76
0	1	0	399.031	395.339	8.14713	8.94	1	3	2	2972.088	2994.666	1.88791	6.18
0	1	1	137.696	131.596	5.25270	5.13	3	1	2	1987.756	2002.860	1.88791	4.09
0	1	1	159.027	131.596	5.25270	2.93	2	3	0	3450.088	2846.418	1.86908	6.96
1	1	0	143.089	119.931	4.70374	2.17	2	3	0	3570.915	2846.418	1.86908	3.58
0	2	0	982.023	1033.934	4.07356	11.07	2	1	3	8953.191	8988.851	1.83784	35.60
0	2	0	1034.674	1033.934	4.07356	5.78	1	2	3	3780.932	3794.822	1.83784	15.15
1	1	1	406.508	393.497	3.88147	8.09	2	1	3	9004.900	8988.851	1.83784	17.79
1	1	1	452.418	393.497	3.88147	4.46	1	2	3	3804.764	3794.822	1.83784	7.58
0	2	1	180.313	143.954	3.50411	2.85	2	3	1	3450.188	3329.556	1.80355	13.10
0	0	2	19539.859	19417.21	3.43579	51.19	3	2	1	3559.679	3434.890	1.80355	13.48
0	0	2	18646.61	19417.21	3.435	24.34	3	2	1	3457.267	3434.890	1.80355	6.52
0	1	2	1307.024	975.134	3.16579	17.52	2	3	1	3350.555	3329.556	1.80355	6.34

(Contd...)

(Contd...)

Appendix 1: (Continued)

Appendix 1: (Continued)

h	k	1	F ² obs	F ² calc	d-spacing	Intensity %	h	k	l	F ² obs	F ² calc	d-spacing	Intensity %
4	1	0	4451.142	3761.761	1.77785	8.00	5	2	0	5327.683	5323.477	1.30458	2.39
1	4	0	6689.573	5661.268	1.77785	12.19	5	2	1	1542.000	1407.126	1.28169	2.73
4	1	0	4549.278	3761.761	1.77785	4.06	2	4	3	3661.342	3424.717	1.27781	6.40
1	4	0	6834.892	5661.268	1.77785	6.19	2	4	3	3476.445	3424.717	1.27781	3.03
0	4	2	5135.513	5434.458	1.75206	18.46	0	6	2	1229.729	1074.901	1.26281	2.21
0	4	2	4853.296	5434.458	1.75206	8.71	1	2	5	1519.401	1301.312	1.25500	2.63
0	3	3	416.988	494.868	1.75090	0.71	2	1	5	4058.551	3476.777	1.25500	6.99
0	0	4	44299.44	42843.20	1.71789	25.21	2	1	5	4165.759	3476.777	1.25500	3.57
0	0	4	41609.73	42843.20	1.71789	11.81	3	4	2	2582.631	2139.482	1.24791	4.26
3	2	2	2828.572	3577.995	1.64186	8.66	3	4	2	2447.812	2139.482	1.24791	2.02
3	2	2	2980.670	3577.995	1.64186	4.52	6	1	0	2591.923	2347.929	1.24242	2.16
3	1	3	1178.452	1167.348	1.60860	3.39	1	4	4	4075.493	4105.235	1.23539	6.82
1	3	3	1029.870	1019.624	1.60860	3.04	4	1	4	1958.139	1976.415	1.23539	3.25
0	5	1	906.796	710.962	1.58546	2.43	5	1	3	3914.399	3862.512	1.23312	6.52
2	4	0	6532.628	5551.903	1.53966	8.51	1	4	4	4 4093.578	4105.235	1.23539	3.41
2	4	0	5206.098	5551.903	1.53966	3.42	5	1	3	3646.206	3862.512	1.23312	3.04
3	3	1	2016.670	2237.286	1.52863	5.28	2	5	2	5769.253	5523.965	1.21962	9.31
3	3	1	2029.582	2237.286	1.52863	2.64	2	5	2	5499.470	5523.965	1.21962	4.43
2	4	1	1883.753	1799.688	1.50241	4.75	4	4	0	4707.399	4650.082	1.17594	3.67
1	2	4	1437.108	1285.359	1.50023	3.57	4	3	3	3911.161	4335.717	1.15621	5.76
2	1	4	943.727	837.913	1.50023	2.49	4	3	3	3978.483	4335.717	1.15621	2.92
2	4	1	2113.836	1799.688	1.50241	2.63	2	4	4	2704.573	2439.914	1.14656	3.99
0	5	2	6955.027	6262.241	1.47225	16.52	4	2	4	1691.490	1524.967	1.14656	2.49
0	5	2	6313.372	6262.241	1.47225	7.50	0	0	6	11455.403	11281.523	1.14526	2.79
5	1	0	2160.929	1781.659	1.46327	2.58	5	1	4	3397.575	2590.372	1.11394	4.76
0	3	4	5825.355	6170.212	1.45181	13.84	1	1	6	5192.075	4273.087	1.11275	7.37
0	3	4	5971.081	6170.212	1.45181	7.04	5	1	4	2830.624	2590.372	1.11394	2.00
3	2	3	3826.212	3955.537	1.44813	8.82	1	1	6	4733.432	4273.087	1.11275	3.37
3	2	3	4045.996	3955.537	1.44813	4.62	2	3	5	2002.749	2052.231	1.10722	2.85
5	1	1	5314.149	4823.613	1.43118	11.92	3	5	2	3293.921	3336.566	1.10234	4.62
5	1	1	5098.003	4823.613	1.43118	5.70	5	3	2	3685.965	3734.239	1.10234	5.13
3	3	2	960.722	900.299	1.42641	2.25	0	7	2	1702.971	1725.846	1.10234	2.35
4	3	1	3047.859	3492.932	1.31464	2.82	5	3	2	3206.589	3734.239	1.10234	2.25
5	2	0	4401.071	5323.477	1.30458	4.01	3	5	2	2862.658	3336.566	1.10234	2.03
											-2 ~		

(Contd...)

Intensities <2% were omitted. F²=Structure factor. CIF: Crystallographic information framework