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1. INTRODUCTION

The significant increase in the rate of chemical reaction in the 
presence of addition substance is called as catalyst this process is 
called as catalysis. Catalysis has played an important role in reduction 
of byproducts, toxic waste, and reduction of poisonous gases from 
chemical processes in our environment. In addition catalysis is one 
of the most importances for the synthesis of medicinally potent 
heterocyclic compounds. Chemical transformation can be more 
efficient and selective using catalyst in that way eliminating unwanted 
products [1,2]. In general, the catalysts are mainly two types, one is 
homogeneous [3], another one is heterogeneous [4]. Homogeneous 
acid catalysts are HCl, ClSO3H, HBr, CH3COOH, CF3COOH, 
CF3SO3H, H2SO4, and HF which are widely used in many significant 
organic transformations as well as important industrial processes, 
but they have some disadvantages in handling, trouble work-up 
procedures, water sensitive, corrosiveness, and production of toxic 
waste [5]. After completion of the reaction, such acids are usually 
destroyed in water quenching stage need subsequent neutralization. 
Furthermore, the recovery of the catalyst from the reaction mixture 
is difficult. Hence, the researchers are focused toward heterogeneous 
recyclable solid acid (HRSA), catalysts such as per fluorinated ion 
exchange polymers and Nafion [6,7] were prepared to solve this 
problem [8]. Afterward, there are many solid acids that were prepared 
such as solid acid zeolite [9], sulfated zirconia [10], phospho sulfonic 
acid (PSA) [11] phosphotungstic acid [12] silica sulfonic acid [13], 
tungstate sulfuric acid [14], alumina sulfuric acid [15,16], molybdate 
sulfuric acid [17], SiO2-Pr-SO3H [18], phosphomolybdic acid [19], 
amberlyst-15 [20], and MCM-41-SO3H [21], were used for the 
synthesis of various organic transformations. These HRSAs have 
many advantages over conventional homogeneous acid catalyst such 
as such as mildness, easy to handling in reactions, cost-effective, 
selective transformations, easy to separate form reaction mixture, 
ecofriendly, and also reduced plant corrosion problems in chemical 
industry. On the other hand, the biodegradable, polymer-supported, 
and recyclable solid acid catalysts such as PEG-SO3H, Cellulose-
SO3H, Chitosan-SO3H, and beta-cyclodextrin-sulfonic acids are 

developed for the synthesis of biologically heterocyclic compounds 
as well as a wide range of industrial important organic intermediates.

Nowadays, the researchers are mainly focused toward eco-friendly, 
green solvents (i.e., water, PEG, and ethylene glycol) easy to 
synthesize, reusable, and easy to handle catalysts. Thus, supported 
catalysts, reagents, and scavengers have drawn much attention of 
researchers [22]. The utility of supported catalysts is well-recognized 
with their advantages such as ease of workup, simple separation 
of products from the catalysts, and economy. The majority of the 
sulfonated organic templates are biodegradable catalysts expect 
MSTA. The biodegradable, polymer supported that recyclable solid 
acid catalysts are an important one in the synthesis of heterocyclic 
compounds due to the high reactivity. Polymer supported catalysts 
have been employed as stoichiometric reagents and catalysts in organic 
synthesis [23,24]. However, their development and applications in 
organic synthesis are undergoing a tremendous renaisstance at present, 
which is undoubtedly being fueled by the special requirements of 
combinatorial and green chemistry [23,24]. The all polymer supported 
catalysts were best example of solid supported organic solid acid 
catalyst that is functionalized with strong acidity, non-corrosiveness, 
and non-volatility and also recognized as a good surfactant. Therefore, 
many efforts have been made by researchers constantly to introduce 
novel recyclable, biodegradable, and polymer-supported catalyzed 
organic synthesis using Cellulose-SO3H, Chitosan-SO3H, PEG-
OSO3H, beta-cyclodextrin-sulfonic acids that are more economical, 
efficient, and biocompatible with the environment and also these 
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catalysts can be easily separate and reused several times without losing 
its catalytic activity.

On the other hand, the sulfonated inorganic templates are denoted as 
HSRAs these catalyst to facilitates various organic transformations 
a significant area of research. Consequently, many researchers were 
introduce new and novel HSRAs catalyzed organic synthesis using 
PSA, boron sulfonic acid (BSA), alumina sulfuric acid (ASA), and 
tungstate sulfuric acid (TSA), which are more efficient, economical 
and eco-friendly with the environment. Furthermore, these catalysts 
can be recovered and reused many times, without decreasing their 
activity. The present article is intended to review briefly the recent 
research progress made concerning the synthesis of different organic 
compounds catalyzed by sulfonated organic/inorganic templates.

2. ORGANIC TEMPLATES

2.1. Melamine Tri Sulfonic Acid (MTSA) [25]
MTSA has been developed as a heterogeneous solid acid catalyst for 
the synthesis of a various organic transformations and heterocyclic 
compounds. MTSA can be easily prepared by adding melamine 
(3.12 g) to chlorosulfonic acid (5 mL) under stirring condition with 
removal of the liberated HCl gas under reduced pressure. Then, the 
reaction was kept at this condition for 30 min at room temperature. 
The mixture was triturated with n-hexane (10 mL) and then filtered. 
The solid residue was washed with n-hexane (10 mL) and dried 
under vacuum. MTSA (7.9 g, 87%) was obtained as a white solid, 
which was stored in a capped bottle. MTSA is a solid, heterogeneous 
catalyst and after completion of an organic transformation, it can 
be recovered and reused several times without loss of its catalytic 
activity.

2.1.1. Synthesis of coumarins
Coumarins and their derivatives are important class of oxygen 
containing heterocyclic compounds preparation of these compounds 
are significant area for organic and medicinal chemistry owing to the 
various biological properties such as antibacterial [26], inhibitor of HIV-
1 protease [27], anticancer [28], inhibition of platelet aggregation [29], 
and inhibitor of steroid 5-reductase [30] and. Furthermore, coumarins 
are widely used as additives in food, agrochemicals, cosmetics, 
perfumes, pharmaceuticals [31], and also in the preparation of optical 
brightening agents, insecticides, dispersed fluorescent, and tunable dye 
lasers [32]. Based on this importance of coumarins, Shirini et al. [33] 
in 2010 have developed an efficient and eco-friendly synthesis of 
coumarins through the condensation of various phenols, resorcinols, 
and naphthols with ethyl acetoacetate or methyl acetoacetate in the 
presence of MTSA as a heterogeneous recyclable solid acid catalyst in 
solvent free at 80°C (Scheme 1). In addition, the authors also carried 
out a comparison of MTSA with various acid catalysts such as InCl3, 
[bmim] [HSO4], HClO4-SiO2, and Wells-Dawson Heteropolyacid. 
It was found that MTSA is best suited catalyst for the Pechman 
condensation.

2.1.2. Synthesis of chemoselective oxathioacetalyzation of 
aldehydes
Oxathiolanes are important protecting groups for aldehydes due 
to their considerable stability under acidic and basic conditions. 
The construction of Oxathiolanes are by the reaction of aldehyde 
with 2-mercaptoethanol.   The mercaptoethaol is another significant 
protecting reagent for aldehydes. There are numerous reagents were 
used for the synthesis of targeted compounds such as p-TsOH [34], 
HClO4 [35], ZrCl4 [36], TMSOTf [37], TBAB [38], OTAB [39], NBS 
[40], MeS2/Br2 [41], PPS/SiO2 [42], PAS [43], TaCl5/SiO2 [44], ASA 
[45]. However, these reported methods suffer from such as long reaction 
time, vigorous reaction conditions, the occurrence of side reactions, 

and unavailability of the reagents, as well as poor yields of the desired 
product. Due to this Shirini et al. [46] reported chemoselective high 
yield oxathioacetalyzation (Scheme 2) in the presence of MTSA.

2.1.3. Synthesis of triazolo[1,2-a]indazole-triones and some 
2H-indazolo[2,1-b]phthalazine-triones
Triazolo[1,2-a]indazole-triones and 2H-indazolo[2,1-b]phthalazine-
triones are an important class of nitrogen containing heterocyclic 
compounds and also important class of natural and non-natural 
products, many of which exhibit useful biological activities and clinical 
applications [47,48]. Khazaei et al. have developed a solvent-free 
synthesis of Triazolo[1,2-a]indazole-triones and 2H-indazolo[2,1-b]
phthalazine-triones, through the condensation of various aldehydes, 
β-ketones (dimedone or 1,3-cyclohexanedione) urazole and 
phthalhydrazide in the presence of MTSA as a heterogeneous recyclable 
solid acid catalyst in solvent free at 80–100°C (Scheme 3) [49].

2.1.4. Synthesis of crossed-aldol condensation
Crossed-aldol condensation is one of the most significant method for 
the carbon-carbon bond formation and the synthesis of α, β-unsaturated 
carbonyl compounds and also important precursors to potentially 
bioactive pyrimidines derivatives [50], intermediates of agrochemicals, 
perfumes, and pharmaceuticals [51]. Crossed-aldol condensation 
is typically carried out using strong acid or base [52]. However, this 
procedure suffers from reverse and side reactions resulting in low yields 
of the products. Various methods for the synthesis of this type of reactions 
have been developed. Various metal complexes ions, such as Co(II), 
Fe(II), Mn(II), Ni(II), and Zn(II), were used as catalysts [53], but all the 
reported yields were <38%. On the other hand, the other methods such 
as silica sulfuric acid [54], SiO2-Pr-SO3H [55], LiClO4 [56], polymer 
supported sulfonic acid (NKC-9), and carbon based solid acid [57] have 
also been used to synthesis of this reaction. The reported methods are 
effective but it contains various drawbacks such as requirement of long 
reaction times, hazards, explosive, use of solvent, and formation of 
side-products. Therefore, Shirini et al. [58] reported efficient and eco-
friendly synthesis of crossed-aldol condensation of various aromatic 
aldehydes and cyclic ketones in the presence of MTSA under solvent 
free at 75°C (Scheme 4). Furthermore, they also comparison with 
other reported methods such as silica sulfuric acid [54], I2 [59], SiO2-
Pr-SO3H [55], and NKC-9 [57], among all of them, MTSA is the best 
suited catalyst for this reaction.

2.1.5. Protection alcohols, phenols, aldehydes, and amines
Shirini et al. [25] have been developed efficient and eco-friendly 
procedure for the protection of alcohols, phenols, aldehydes, and 
amines using MTSA under solvent-free condition at room temperature 
(Scheme 5). In this method, they used a wide range of substrates are 
protected by the corresponding reagents such as alcohols, phenols are 

Scheme 1: Synthesis of coumarins catalyzed by MTSA.

Scheme 2: Synthesis of oxathiolanes catalyzed by MTSA.
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protected by 3,4-dihydro-2H-pyran, aldehydes were protected by acetic 
anhydride, and amines are protected by di-tert-butoxypyrocarbonate 
[(Boc)2O]. All the products were obtained with high yields with 
short reaction times. In addition, these results are comparison with 
other reported methods such as p-toluene sulfonic acid [60], copper 
methanesulfonate/HOAc [61], and silica sulfuric acid [62], among all 
of these, MTSA is superior than reported one.

2.1.6. N-formylation of amines
The formyl group is most significant amino protecting group in 
peptide synthesis [63]. Formamides are important intermediates in 
organic synthesis that have been used in the synthesis of biological 
active compounds, for example, substituted imidazoles [64], 
nitrogen-bridged heterocycles [65], fluoroquinolones [66], and 
1,2-dihydroquinolines [67]. In general, syntheses of formamides are 
the reaction of amines with formic acid, in the presence of various 
catalyst, such as Amberlite IR-120 [68], In [69], nano-MgO [70], I2 [71], 
VB1 [72], and sulfonic acid supported on hydroxyapatiteencapsulated-
c-Fe2O3 nanocrystallites [73]. These methods are appropriate for 
certain synthetic conditions; however, the majority of these reported 
procedures are connected with one or more disadvantages such as 
expensive reagents, low selectivity, longer reaction times, tedious 
work-up procedure, and large amounts of catalysts which would 
ultimately result in the generation of large amounts of toxic waste. 
Yang et al. [74] reported a novel, mild, and efficient method for the 
N-formylation of amines using amines and formic acid in the presence 
of MTSA as a catalyst (Scheme 6) and also these results are comparison 
with other literature methods such as I2, in, nano-MgO, ZnCl2, among 
all of these, MTSA is shows best results.

2.1.7. Synthesis of β-acetamido ketones
β-Acetamido ketones are important building blocks for various 
biologically and medicinally valuable compounds [75-80]. For example, 
they are precursors of molecules such as 1,3-amino alcohols [75-77] 
and γ-lactams [78], as well as biologically attractive compounds such 
as nikkomycins or neopolyoxins [76,79]. Moreover, it is reported that 
β-acetamido ketones can act as a glucosidase inhibitors [80]. Due to 

the importance of these compounds various methods are reported for 
the synthesis of β-Acetamido ketones such as heteropolyacids [81], 
ZrOCl2.8H2O [82], CoCl2 [83], and polyaniline-supported salts [84]. 
However, the reported methods have some drawbacks such as low 
yields, long reaction times, the use of toxic or expensive catalysts, 
the use of large amount of catalyst, harsh reaction conditions, tedious 
work-up procedure, and performance the reaction under certain special 
conditions so that Zare et al. [85], search for finding a protocol for 
the preparation of β-acetamido ketones (Scheme 7) which are not 
associated with the above-mentioned disadvantages.

2.1.8. Synthesis of 7-alkyl-6H,7H-naphtho[10,20:5,6]pyrano-
[3,2-c]chromen-6-ones
Chromenes are naturally occurring chemical compounds [86-89], 
and poses various biological and therapeutic properties such as 

Scheme 3: Synthesis of triazolo[1,2-a]indazole-triones and some 2H-indazolo[2,1-b]phthalazine-triones catalyzed by MTSA.

Scheme 4: Synthesis of crossed-aldol condensation catalyzed by MTSA.

Scheme 5: Protection alcohols, phenols, aldehydes, and amines 
catalyzed by MTSA.

Scheme 6: N-formylation of amines with formic acid in the 
presence of MTSA.
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antimicrobial [90,91], antioxidant [92,93], ant rhinovirus [94], 
anticancer [95,96], and antihypertensive activity [97]. Due to the 
importance of chromenes, Wu et al. [98] have been developed efficient 
neat chemical synthesis of chromenes in the presence of MTSA 
(Scheme 8). He also studied various molar percentage of MTSA and 
reaction temperature he found 2 mol % of MTSA at 120°C this is the 
best condition for the synthesis of biologically potent chromenes.

2.1.9. Synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones
Biginelli reported the first synthesis of 3,4-dihydropyrimidin-2(1H)-
ones, through a one-pot three component condensation of an aldehyde, 
a b-ketoester and urea in 1893 [99]. Nowadays, the synthesis of 
3,4-dihydropyrimidin-2(1H)-ones/thiones has attracted the attention 
of many synthetic chemists due to their wide range therapeutical and 
pharmacological properties, such as antitumor, anti-inflammatory, 
antiviral, and antibacterial properties [100]. Furthermore, many alkaloids 
containing dihydropyrimidine as the core unit, exhibiting interesting 
biological properties, have been isolated from marine sources [101-103]. 
The researchers are developed various methods for the synthesis of 
3,4-dihydropyrimidin-2(1H)-ones some of them H3PW12O40/SiO2 [104], 
Cu(OTf)2 [105], NH2SO3H [106], 12-molbdophosphoric acid [107] 
[bmim]BF4-immobilized Cu(II) acetylacetonate [108], and [bmim]
[FeCl4] [109]. On the other hand, in spite of their potential utility, the 
practical application of most of these reagents suffers from disadvantages 
such as the use of expensive or less easily available reagents, long 
reaction times, vigorous reaction conditions, high temperatures, 
unsatisfactory yields, and tedious manipulations to isolate the products. 
Therefore, Shirini et al. [110] have been discovered an inexpensive, 
facile, and efficient reagent for the preparation of 3,4-dihydropyrimidin-
2(1H)-ones/thiones in the presence of MTSA (Scheme 9).

2.1.10. Trimethylsilylation of alcohols and phenols are 
promoted by MTSA
The protection of hydroxyl groups by the formation of silyl ethers has 
been extensively used in organic synthesis [111]. The silylation of 

alcohols and phenols is very significant attention in multistep organic 
synthesis [111]. There are numerous reagents which have been used 
protection, hexamethyldisilazane (HMDS), a commercially available, 
stable, and cheap, reagent, is selected as one of the best reagent for 
the silylation. Its handling does not require special precautions 
and the workup is not facile because the by-product of the reaction 
is ammonia, which is simple to remove from the reaction medium. 
However, the low silylating power of HMDS is the main drawback to 
its application. Hence, there are a variety of catalysts for the activation 
of this reagent such as 1,3-dichloro-5,5-dimethylhydantoin [112], 
TiCl2(OTf)–SiO2 [113], NaHSO4–SiO2 [114], NBS [115], CuSO4 [116], 
ZnO [117], and I2 [118]. However, the accessible methodologies are 
associated with one or more disadvantages such as harsh reaction 
conditions, for example, treatment with air sensitive reagent such 
as trichloroisocyanuric acid at CH2Cl2 for 4 h, heating at 85°C in 
PhMe catalyzed by alumina-supported heteropolyoxometalates,15 
heating in CH3CN in the presence of 25 mol% Fe(HSO4)3 at reflux 
for 1.7 h; prolonged reaction time; and requirement for hazardous and 
carcinogenic organic solvents such as CH3CN, CH2Cl2, PhMe; use 
of toxic, costly, or air sensitive catalysts [119]. Thus, Yan et al. [120] 
have been developed environmentally benign, high-yielding, and 
clean approaches for the silylation of hydroxyl groups in the presence 
of recyclable solid acid MTSA (Scheme 10). In addition, he studied 
comparison of reported methods to the present method this is the best 
one for the silylation of alcohols and phenols. Furthermore, he used to 
study the recyclability of the catalyst up to three runs, the catalyst is 
effectively working.

2.1.11. Synthesis of aryldithienylmethanes
Dithienylmethanes are significant building blocks for the synthesis of 
a variety of functionational porphyrins and its analogs [121], which 
can be used in materials science [122]. Subsequently, the synthesis of 
dithienylmethanes by the reaction of aldehydes with thiophene under 
various catalysts such as trifluoroacetic acid [121a], NaHSO4- SiO2 

Scheme 7: Synthesis of β-acetamido ketones in the presence of MTSA.

Scheme 8: Synthesis of 7-alkyl-6H,7H-naphtho[10,20:5,6]pyrano-[3,2-c]chromen-6-ones catalyzed by MTSA.

Scheme 9: Synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones in the presence of MTSA.
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[123] BF3·Et2O [121a], TiCl4 [121b], and Hence, a mild, efficient, and 
green chemical method using for the synthesis of dithienylmethanes in 
the presence of heterogeneous reusable catalyst MTSA (Scheme 11). 
Furthermore, he studied the different molar percentage of catalyst and 
different temperatures he found the best method for the synthesis of 
targeted compounds 20 mol % of catalyst at 84°C and also he used to 
study the comparison with reported methods.

3. HYBRID TEMPLATES

3.1. Synthesis of β-Cyclodextrin Sulfonic Acid, β-Cyclodextrin-n-
propyl Sulfonic Acid, β-Cyclodextrin-n-butyl Sulfonic Acid
A mixture of β-cyclodextrine (5.00 g, 4.5 mmol) in CHCl3 (20 mL), 
chlorosulfonic acid (1.00 g, 9 mmol) was added dropwise at 0°C 
during 2 h. After addition was completed, the mixture was stirred for 2 
h to remove HCl from reaction vessel. Then, the mixture was filtered 
and washed with methanol (30 mL) and dried at room temperature to 
obtain sulfonated β-cyclodextrine as white powder (5.28 g). The –SO3H 
content was measured by titration method and showed 0.52 mequiv./g.

3.1.1. Synthesis of 3,4-dihydropyrimidine-2(1H)-one/thiones
The biginelli dihydropyrimidine synthesis [124], first described in 1891, 
consists of the condensation of urea, aldehyde, and a 1,3-ketoester. 
This condensation reaction has been used for the synthesis of 
dihydropyrimidin-2-ones, which have fascinated significant interest 
because of their wide applications as antihypertensive agents, calcium 
channel blockers, a-1a-antagonists, and neuropeptide Y (NPY) 
antagonists [125,126]. In addition, some bioactive alkaloids such as 
batzelladine B containing the dihydropyrimidine unit have been isolated 
from marine sources, which show anti-HIV activity [102]. However, 
this method suffers from the drawbacks such as the lower yields of 
the desired products (20–40%) particularly in case of substituted 
aldehydes and loss of sensitive functional groups during the reaction. 
There are several methods developed and these methods have some 
drawbacks such as long reaction time, high catalyst loading, use of 
toxic solvents, and laborious work up procedures. Based on the above 
drawbacks, Asghari et al. [127] in 2011 developed a highly efficient 
and neat method for the synthesis of 3,4-dihydropyrimidine-2(1H)-
one/thiones in presence of β-cyclodextrin sulfonic acid (Scheme 12). 
Furthermore, Gong et al. [128] also reported for the synthesis of 
3,4-dihydropyrimidine-2(1H)-ones in the presence of β-cyclodextrin-
propane sulfonic acid.

3.1.2. Synthesis of 3-indolyl-3-hydroxy oxindoles and 
3,3-di(indolyl)indolin-2-ones
Indole derivatives are nitrogen containing various heterocyclic 
compounds, among them 3-substituted 3-hydroxyoxindoles are contains 
in many natural products and it possess biological activities [129] such 
as antiviral [130], anticancer [131], anti-HIV [132], antitumor [133], 

anticonvulsants [134], antifungal [135,136], anti-angiogenic [137], 
anti-Parkinson’s disease therapeutic [138], and effective SARS 
coronavirus 3CL protease inhibitor [139]. Due to the importance of 
these compounds, the researchers are developed a number of reported 
methods for the synthesis of 3-indolyl-3-hydroxy oxindoles and 
3,3-di(indolyl)indolin-2-ones. These reported methodologies produce 
good results in many instances. However, some of the synthetic 
strategies suffer from expensive reagents, metal catalyst, long reaction 
time, harsh reaction condition, environmentally hazardous, tedious 
work-up procedure, unsatisfactory yield, and use of homogeneous 
catalyst which are difficult to separate from the reaction mixture and 
reuse. Hence, Tayade et al. [140] developed an efficient aqueous 
medium for the synthesis of 3-indolyl-3-hydroxy oxindoles and 
3,3-di(indolyl)indolin-2-ones in the presence of β-cyclodextrin 
sulfonic acid (Scheme 13).

3.1.3. Synthesis of 2,3-dihydroquinazolin-4(1H)-one
Quinazolinone derivatives are an important class of nitrogen 
containing fused heterocycles due to their wide range of potential 
pharmacological and biological properties [140-143]. The importances 
of these compounds are for the synthesis of drug molecules and 
natural products [144,145]. Recent years, the researchers are reported 
numerous methods for the preparation of 2,3-dihydroquinazolin-
4(1H)-ones. The literature methods have drawbacks such as low yields, 
expensive catalysts, high reaction temperature, long reaction times, 
tedious procedures for preparation of catalysts, and tedious work-up 
conditions (column chromatography). Hence, Wu et al. have been 
developed an efficient, simple, easy work-up, and environmentally 
benign protocol using a recyclable catalyst and a green solvent for 
the synthesis of 2,3-dihydroquinazolin-4(1H)-one in the presence of 
β-cyclodextrin sulfonic acid (Scheme 14a and b).

3.1.4. Synthesis of 1-amidoalkyl-2-naphthols
Compounds bearing 1,3-amido oxygenated functional groups are 
ubiquitous to a variety of biologically important natural products 
and potent drugs including a number of nucleoside antibiotics 
and HIV protease inhibitors such as ritonavir, lopinavir, and the 
hypotensive [146]. In addition, the bradycardiac effects of these 
compounds have been evaluated [147]. The importance of amidoalkyl 
naphthols has attracted renewed attention for their synthesis and various 
improved procedures have been developed using various catalyst as 
well as addition energies (i.e., microwave, ultrasonication). However, 
these reported procedures suffer from one or more shortcomings such 
as use of toxic organic solvents, prolonged reaction time, low yield, 
requirement of excess of reagents or catalysts, and harsh reaction 
conditions. Therefore, introducing neat method and utilizing eco-
friendly catalysts which can simply be recycled at the end of the 
reactions have been receiving permanent attention. The necessity 
for an environmentally benign procedure with a heterogeneous and 
reusable catalyst is encouraged to develop a safe alternative method 
for the synthesis of 1-amidoalkyl-2-naphthols in the presence of 
β-cyclodextrin-butane sulfonic acid (β-CD-BSA) (Scheme 15) [148].

3.1.5. Synthesis of dihydropyrano[2,3-c]pyrazole
The nitrogen and oxygen fused heterocycles; pyranopyrazoles are 
ubiquitous and have been denoted as “core structures” in drug discovery. 
The dihydropyrano [2,3-c] pyrazoles show a various biological 
properties such as anti-inflammatory [149b], antitumor [149a], 
analgesic [149c], and antimicrobial [149d]. In addition, these 
compounds act as insecticides and molluscidal agents [150]. Due 
to the most potent biological properties of these compounds are 
prepared using various catalytic methods that have been developed. 
The reported methods show some disadvantages such as high catalyst 
loading, harsh reaction condition, and use to toxic solvents. Hence, 
Chaudhari et al. [151] have been developed highly efficient and agues 

Scheme 10: Trimethylsilylation of alcohols and phenols is 
catalyzed by MTSA.

Scheme 11: Synthesis of dithienylmethanes in the presence of 
MTSA.
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synthesis of dihydropyrano[2,3-c]pyrazole derivatives involve a 
four-component coupling of aromatic aldehyde, malononitrile, ethyl 
acetoacetate, and hydrazine hydrate in the presence of β-cyclodextrin 
sulfonic acid (Scheme 16).

3.1.6. Synthesis of 4-thiazolidinones

Thiazolidinones are an important S, N, and O containing heterocyclic 
compounds which possess diverse potent biological activities such as 
antibacterial [152,153], anti-tubercular [154], anti-inflammatory [155], 
anticonvulsant [156,157], anticancer [158,159], antifungal [160], 
antihistaminic [161,162], antiviral [163], and cardiovascular 
effects [164]. The most potent biological properties of these 

Scheme 12: Synthesis of 3,4-dihydropyrimidine-2(1H)-one/thiones in the presence of β-CD-SO3H.

Scheme 13: Synthesis of 3-indolyl-3-hydroxy oxindoles and 3,3-di(indolyl)indolin-2-ones in presence of β-CD-SO3H.

Scheme 15: Synthesis of 1-amidoalkyl-2-naphthols in the presence of β-CD-SO3H.

Scheme 14: (a and b) Synthesis of 2,3-dihydroquinazolin-4(1H)-one in the presence of β-CD-SO3H.

a

b
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compounds are prepared using various catalytic methods that have 
been developed. The reported methods show some disadvantages such 
as tedious workup procedures, high catalyst loading, and use to toxic 
solvents. Hence, Chaudhari et al. [151] have been developed highly 
efficient method for the synthesis of 4-thiazolidinones in presence of 
β-cyclodextrin sulfonic acid (Scheme 17).

3.1.7. Synthesis of 2H-indazole [2,1-b]phthalazinetriones
The construction of nitrogen, sulfur, oxygen, and phosphorus 
containing heterocyclic compounds are great interest due to their wide 
range of applications. Among them nitrogen containing heterocycles 
are showed most potent biological properties. Phthalazines are 
significant nitrogen contacting heterocyclic compounds which contain 
good medicinal and pharmacological activities such as anticonvulsant, 
cardiotonic, and vasorelaxant [165-167]. Owing to the importance of 
this compounds the researchers have been developed various catalytic 
methods for the construction of Phthalazine and its derivatives. The 
reported methods shown various disadvantages such as expensive 
catalyst, harsh reaction conditions, and non-recyclable catalysts. To 
solve this problem, Atar et al. [168] have been developed a green 
protocol for the synthesis of 2H-indazole [2,1-b]phthalazinetriones in 
the presence of β-cyclodextrin sulfonic acid (Scheme 18).

4. CELLULOSE SULFONIC ACID (CSA)

4.1. The Synthesis and Importance of CSA
Cellulose (5.00 g) in 20 ml of n-hexane, the mixture is magnetically 
stirred and 1.00 g of chlorosulfonic acid (9 mmol) added dropwise at 
0°C over 2 h. HCl gas is immediately evolved. After completion of 
the addition the mixture is stirred for 2 h at room temperature. Then, 
the mixture is filtered and the collected solid washed with 30 ml of 

acetonitrile and dried at room temperature to afford 5.25 g of CSA as a 
white powder 33. CSA is non-hygroscopic, non-explosive, and stable 
at room temperature.

CSA is one of the significant heterogeneous solid acid catalysts which 
has a good performance as an inexpensive biopolymer-based catalyst 
and can be easily separated without contaminating the products. 
Syntheses of various kind organic reactions using CSA have many 
advantages such as inexpensive catalyst, simple work-up procedure, 
environmental friendly, outstanding yield of the products with high 
purity, solvent-free reaction shorter reaction times, and conditions and 
it can be recovered and reused several times without loss of its catalytic 
activity.

4.1.1. CSA catalyzed oxidation of sulfides and thiols by hydrogen 
peroxide
The oxidation of sulfur to sulfoxide is one of the most important 
for the synthesis of drug, drug metabolism, and bio conjugates 
compounds [169,170] and also the removal of excess of sulfur form 
reaction mixture various methods has developed by oxidation using 
various catalytic methods [169-171]. However, the reported methods 
have shown some disadvantages such as long reaction time, high 
catalyst loading, and harsh reaction conditions. Due to the above 
drawbacks in mind Ahmad et al. [172] have developed simple and high 
yielding for the oxidation of thiols and sulfides in the presence of CSA 
(Scheme 19).

4.1.2. Synthesis of dihydropyrano [2,3-c] pyrazole
Pyrazoles are an important class of nitrogen containing heterocycles 
that have attracted a great attention due to the discovery of the 
considerable properties exhibited by a great number of their 
derivatives. Compounds containing a pyrazole design are having a 

Scheme 16: Synthesis of dihydropyrano[2,3-c]pyrazoles in the presence of β-CD-SO3H.

Scheme 17: Synthesis of 4-thiazolidinones in the presence of β-CD-SO3H.

Scheme 18: Synthesis of 2H-indazole [2,1-b]phthalazinetriones in the presence of β-CD-SO3H.



Indian Journal of Advances in Chemical Science 2020; 8(4): 177-205

 KROS Publications 184 www.ijacskros.com

wide range of therapeutic areas, including oncological and metabolic 
diseases [173-176]. There are a number of pyrazole containing that 
compounds have been successfully commercialized. Various methods 
have been developed for the synthesis of pyrazoles some of them gave 
good results and some of them possess harsh reaction condition and 
use to toxic solvents. Hence, Nasseri et al. [177] have been developed 
highly efficient and aqueous synthesis of pyrazole and its analogs 
involves a two-component coupling of 1,3-diketone and hydrazines/
hydrazides in the presence of CSA (Scheme 20).

4.1.3. Synthesis of pyrimido and pyrazolo [4,5-b] quinolines
Quinolines and its derivatives are an important class of nitrogen 
containing heterocyclic alkaloids are important synthetic targets both 
in pharmaceutical industries and in academic laboratories [178] and 
also it shows various biological activities such as antitumor [179], 
DNA binding capability [180]. Furthermore, these compounds were 
mainly present as key structural motifs in a large number of bioactive 
drugs such as chloroquine, quinine, camptothecin, and Luotonine-A. 
Pyrimido quinolines are a class of naturally occurring fused uracils 
occupying a special place in synthetic and medicinal chemistry due to 
their wide range of pharmacological and biological properties. Pyrazolo 
quinoline derivatives are the important kind of fused heterocyclic 
compounds, possess significant bioactivities such as antimalarial, 
antiviral, and antibacterial activities, acting as potent remedies 
for treating at inflammatory disorders, restenosis, herosclerosis or 
demyelinating disorders, and cancers [181]. The researchers have been 
developed various catalyst for the synthesis of pyrazolo quinoline 
derivatives. The developed catalysts have some limitation such as 
moisture sensitive catalyst and additional energies like microwave, 

due the avoidance of these problems Azimi [182] have developed 
any efficient neat chemical synthesis of pyrimido and pyrazolo[4,5-b]
quinolines in the presence of CSA (Scheme 21).

4.1.4. Synthesis of 3-substituted indoles
The indole is important nitrogen containing heterocyclic compound 
and it is widely present in a variety of biologically active compounds 
and has become an vital structural component in many pharmaceutical 
agents due to the immense structural diversity of biologically potent 
indoles [183,184]. The straightforward and direct method for the 
synthesis of 3-alkylated indoles involves the conjugate addition of 
indoles to α,β-unsaturated compounds in the presence of Lewis 
acids [185,186], protic acids [187,188], and metal complexes [189,190]. 
However, many of these procedures involved strong acidic conditions, 
longer reaction times, expensive reagents, and low yields of products. 
Due to the avoidance of this problems, Bathula et al. [191] have 
developed an efficient synthesis of 3-substituted indoles in the presence 
of CSA (Scheme 22).

4.1.5. Synthesis of 1,2-dihydro-1-aryl naphtho [1,2-e] [1,3] 
oxazine-3-one derivatives
Oxazinone analogs are nitrogen and oxygen containing important 
heterocycles in the field of medicinal chemistry due to their significant 
biological activities [192,193]. Naphthalene condensed 1,3-oxazine-3-
one derivatives have shown a broad spectrum of anti-inflammatory, 
antibacterial, analgesics, and muscle relaxant activities [194,195]. 
Based on this, importance of this various methods has been reported 
in the literature for the synthesis of naphthoxazinone derivatives, 
which include wet cyanuric chloride [196], acidic catalyst [197,198], 
using TiCl4 [199], pyridinium based ionic liquid [200], and ZnO 
nanoparticles [201]. However, these reported methods suffer from 
many disadvantages such as low yield, longer reaction time, tedious 
workup procedure, and harsh reaction conditions. To avoid these 
problems, Kawade et al. [202] have developed an efficient green 
chemical synthesis of 1,2-dihydro-1-aryl naphtho [1,2-e] [1,3] 
oxazine-3-one derivatives by the reaction of aldehyde, beta-naphthol 
and urea in the presence of CSA with microwave irradiation as well as 
neat conditions (Scheme 23).

4.1.6. Synthesis of bis-chalcones and bis-pyrazlone
Chalcones are significant pharmacophores of various natural 
products [203]. The official therapeutic agents incorporating this 
molecular scaffold include xanthohumol (antioxidant), 3-methoxy-

Scheme 19: CSA catalyzed oxidation of sulfides and thiols by 
hydrogen peroxide.

Scheme 20: Synthesis of dihydropyrano [2,3-c] pyrazole.

Scheme 21: Synthesis of pyrimido and pyrazolo [4,5-b] quinolines.
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4-hydroxyloncocarpin (NADH:ubiquinone oxidoreductase activity 
inhibitor), and coumarin-chalcone (anticancer agents), respectively. 
Many functionalized derivatives were also used as NO production 
inhibitor, antitubulin, antidiabetic, peritoneal antiangiogenic, 
antiproliferative agents, and probe to study protein-dye interactions 
[204-208]. Chalcones are usually synthesized through Claisen-Schmidt 
condensation carried out in basic or acidic media under homogeneous 
conditions in the presence of various catalysts [209-214]. However, 
in spite of their possible value, many of the literature methods suffer 
from drawbacks such as use of expensive and toxic catalysts, refluxing 
in hazardous organic solvents for prolonged time, harsh reaction 
conditions with non-recyclable catalysts, high temperature, and low 
product yields. Hence, to avoid this problems, Siddiqui et al. [215] have 
been developed greener procedure for the synthesis of bis-chalcones 
and bis-pyrazolones in the presence of CSA (Scheme 24).

4.1.7. One-pot conversion of b-artemisinin to artemether
Malaria is one of the major diseases affecting people worldwide and 
causing the death of nearly 1–2 million people per year, mostly in 
African countries children. Artemisinin is one of the most significant 

treatments of human malaria. Artemisinin is a naturally occurring 
sesquiterpene lactone and its derivatives (dihydroartemisinin, 
artemether, and artesunate) are essential to modern malaria therapy, 
thus requiring an efficient synthetic route for these compounds. Over 
the past 10 years, the researchers are efforts an extensive synthetic 
have been directed towards the synthesis for artemether/arteether. This 
synthesis of artemether/arteether from Artemisinin involves mainly 
in two steps, that is, (i) first step involves the reduction of carbonyl 
group and (ii) in the second step etherification take place. The reported 
methodologies generate good yields but have some limitations such as 
the carcinogenic organic solvents such as benzene, toluene use of highly 
hazardous Lewis acid and pro acid, and use of column chromatograph 
in the separation of desired b-isomer. To avoid this problems, Kumar 
et al. [216] have been developed one-pot, environment friendly, and 
cost-effective process for preparation of methyl/ethyl ether derivative 
of artemisinin in the presence of NaBH4/cellulose sulfuric acid 
(Scheme 25).

4.1.8. Conversion of aldehydes to gem-diacetates
The protection of aldehydes to gem-diacetates (Acylals) is significant 
role in multistep organic synthesis [217]. In addition, acylals are 
important useful reagents to use as crosslinking reagents [218], acylals 
are good intermediates for nucleophilic substitution reactions [219], 
and also it shows good stability toward a various reaction methods. 
Due to this importance numerous methods have been presented using 
acid catalysts. Some of the reported methods show some disadvantages 
such as low product yields, harsh reaction conditions, number of 
purifications steps, and non-recyclables catalysts. To overcome above 
these drawbacks, Mehrjardi et al. [220] have been developed for an 
efficient ecofriendly and easy method for preparation of gem-diacetates Scheme 22: Synthesis of 3-substituted indoles.

Scheme 24: Synthesis of bis-chalcones and bis-pyrazlone.

Scheme 23: (a and b) Synthesis of 1,2-dihydro-1-aryl naphtho [1,2-e] [1,3] oxazine-3-one derivatives.

b

a
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using biodegradable CSA catalyzed (Scheme 26). This method is 
very convenient to conversion of aldehydes to acylals compared with 
reported catalyst.

4.1.9. Synthesis of 5H-dibenzo[b,i]xanthene-tetraones and 
spiro[dibenzo[b,i]xanthene-13,3’-indoline]-pentaones
5H-dibenzo[b,i]xanthene-tetraones and spiro[dibenzo[b,i]xanthene-
13,3’-indoline]-pentaones are important oxygen containing 
heterocycles. These molecules show various biological activities such, 
antiviral, anti-inflammatory, and antimicrobial properties. Various 
methods have been reported for these molecules; the reported methods 
show limitations such as expensive catalyst and solvents, high catalyst 
loading, and low yields of the product. To avoid this problems, Azimi 
et al. [221] have been developed for an highly efficient method for the 
synthesis of 5H-dibenzo[b,i]xanthene-tetraones and spiro[dibenzo[b,i]
xanthene-13,3’-indoline]-pentaones in the presence of biodegradable 
CSA (Scheme 27).

4.1.10. Heteroaryl substituted 1,4-dihydropyridines (DHPs)
The DHPs are promising nitrogen heterocyclic compounds, it 
exhibits significant biological and pharmacological properties such as 
antifilarial, antifungal, antitubercular and also they serve as calcium 
channel modulators for the treatment of cardiovascular disorders 
[222,223]. Many methods have been reported for the synthesis of 
DHPs through the Hantzch method. Various catalytic reports have 
some disadvantages such as harsh reaction method, unwanted by 
products formation, low yields, and high work procedures. Hence, 
Mamaghani et al. [224] have been developed an alternative method for 
the synthesis of biologically potent heteroaryl dihyropyridines in the 
presence of biocompatible CSA (Scheme 28).

4.1.11. Synthesis of 5-hydroxymethylfurfural and 
5-ethoxymethylfurfural (EMF)
Nowadays, the important abundant renewable biomass resource has 
received significant attention as an alternative feedstock for both 
fuels and chemicals through the biorefinery technology. Biomass is 
mainly consists of carbohydrates, which transformation to various 
chemical compounds and fuels. In general, the fructose is conversion 
to 5-hydroxy methyl furfural (HMF), using various homogeneous 
and heterogeneous acid catalysts. The conversion of HMF to5-EMF 
is most prominent reaction due to which is an excellent additive for 
diesel. Furthermore, various methods have been developed for the 
conversion of HMF to EMF these methods show disadvantages such 
as no recyclability of catalyst, and disposal of acids; to overcome this 
problems, Liu et al. [225] have been developed highly green method for 
the conversion of HMF to EMF in the presence of CSA (Scheme 29).

4.1.12. Diazotization-iodination of aryl amines
The halogen substituted aromatic compounds are important 
precursors for various carbon-carbon bond formations. Among all 
of them, the iodo substituted compounds are significant synthetic 

intermediates and also they have wide applications in medicine such 
as nuclear magnetic imaging and radioactivity label markers in radio-
immunoassays [226,227]. The iodoarenes are usually synthesis from 
Sandmeyer reaction [228,229]; this reaction is complicated due to 
the numerous competing reactions. There are various methods have 
been reported for the iodation of amines the reported methods show 
some advantages and disadvantages such as highly expensive reagents 
and use of toxic solvents is commonly required. Hence, there is still 
significant interest in developing easy methods for synthesis of aryl 
iodides that require minimizing environmental pollution and low cost 
is preferable. Nemati et al. [230] have been developed green method 
for the synthesis of iodoarenes in the presence of biodegradable CSA 
(Scheme 30).

4.1.13. Synthesis of 3,4-dihydropyrimidinones/thiones and 
novel N-dihydro pyrimidinone-decahydroacridine-1,8-diones
Multicomponent reactions are important for the construction of 
various organic transformations in one pot method. Among them, the 
construction of N, O, S heterocyclic compounds is prominent due 
to the diverse biological properties [231]. During the past 10 years, 
the researchers are efforts a wide-ranging synthetic methods have 
been developed towards the synthesis for artemether/arteether DHPs 
are belongs to nitrogen containing heterocycles compounds and it 
possess potent pharmaceutical activities; there are numerous reports 
are available for the preparation of DHPs. However, they have some 
limitations such as expensive catalyst, harsh reaction conditions, 
low yields, and toxic solvents. Hence, Rajack et al. [232] have been 
developed an highly efficient and green method for the synthesis of 
3,4-dihydropyrimidinones/thiones and N-dihydro pyrimidinone-
decahydroacridine-1,8-diones (Scheme 31).

4.1.14. Synthesis of quinoxalines
Quinoxalines and its derivatives have received significant attention 
from organic and medicinal chemists due to the wide range applications 
in various fields, such as organic semiconductors [233], combinatorial 
drug discovery libraries [234], electron luminescent materials [235], and 
DNA cleaving agents [236]. Furthermore, quinoxalines are structural 
similarities with coumarin ring system and its show potent biological 
properties. There are numerous homogeneous and heterogeneous 
catalytic methods have been developed for the synthesis of them but 
none of them gives satisfactory results. Consequently, Kuarm et al. 
have been developed a highly efficient, inexpensive, method for the 

Scheme 25: One-pot conversion of b-artemisinin to artemether.

Scheme 26: Conversion of aldehydes to gem-diacetates.
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synthesis of quanoxilines in the presence of biodegradable cellulose 
sulfuric acid (Scheme 32) [237].

4.1.15. Protection of hydroxyl groups using HMDS
Protection of alcohols is an important factor during multistep organic 
synthesis. The alcohols are protected by various functional groups 
such as aceticanhydride, methyl iodide, tosyaltion, mesylation, and 
silylation; among all of them silylation is good protecting group 

than that of above mentioned due to the low viscosity, fine solubility 
in non-polar solvents, resistant to oxidation, and thermal stability. 
Furthermore, trimethylsilylation of hydroxy compounds is used 
to volatility of the compounds gas chromatography and as well as 
mass spectrometry [238]. There are numerous reported methods 
for the protection of hydroxy compounds with 1,1,1,3,3,3-HMDS; 
the reported methods suffer to increase the yield of the product and 
expensive catalyst as well as drastic reactions conditions. To solve 

Scheme 27: Synthesis of 5H-dibenzo[b,i]xanthene-tetraones and spiro[dibenzo[b,i]xanthene-13,3'-indoline]-pentanones.

Scheme 28: Heteroaryl substituted 1,4-dihydropyridines.

Scheme 29: Synthesis of 5-hydroxymethylfurfural and 5-ethoxymethylfurfural.
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this problem, Shaterian et al. have been developed an environment 
friendly biodegradable CSA promoted for the protection of hydroxy to 
silylation (Scheme 33) [239].

4.1.16. Synthesis of 2-amino-4,6-diphenylnicotinonitriles
The occurrence of pyridines in nature and their essential role as 
flexible building blocks in the synthesis of natural products as well 
as biologically potent compounds has led to a continued interest 
in the laboratory synthesis of pyridine derivatives [240,241]. The 
majority of the pyridine nucleolus contacting derivatives shows 
multiple pharmacological activities. Due to the significance of these 
compounds, various methods are reported in the literature; but there 
are some limitations such as non-recyclable catalyst, toxic organic 
solvents, and low yields. Hence, Mansoor et al. [242] have been 
developed highly efficient green chemical synthesis of 2-amino-4,6-
diphenylnicotinonitriles in the presence of recyclable natural polymer 
cellulose sulfuric acid catalyst (Scheme 34).

4.1.17. Synthesis of DHPs
DHPs are an important precursors in various biological properties; 
the important characteristic of these compounds the researchers has 

been developed various catalytic methods these methods show some 
disadvantages such as low product yields, harsh reaction conditions, 
and use of expensive solvents. Therefore, Murthy et al. [243] have 
been developed inexpensive, efficient method for the synthesis of 
DHPs as well as they studied antimicrobial activity along with docking 
studies (Scheme 35).

4.1.18. Synthesis of -amino amide, 3,4-dihydroquinoxalin-
2-amine, 4H-benzo[b][1,4]thiazin-2-amine and 
1,6-dihydropyrazine-2,3-dicarbonitrile derivatives
Nowadays, science and technology are mainly focusing on sustainable 
and environmentally friendly resources and processes. In this view, 
biopolymers and functionalized biopolymers are most important 
attractive candidates to explore for the synthesis of various important 

Scheme 30: Diazotization-iodination of aryl amines.

Scheme 31: 3,4-Dihydropyrimidinones/thiones and novel N-dihydro pyrimidinone-decahydroacridine-1,8-diones.

Scheme 32: Synthesis of quinoxalines.

Scheme 33: Protection of hydroxyl groups using HMDS.
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heterocyclic compounds. Three component Ugi-reactions is most 
significant method for the synthesis of various biologically potent 
nitrogen containing heterocyclic compounds. The synthesis of these 
compounds various methods has been developed these methods suffer 
from various drawbacks such as long reaction times, high reaction 
temperatures, and tedious workup procedures. To solve these drawbacks, 
Shaabani et al. have been developed an efficient green method for 
the synthesis of 1-amino amide, 3,4-dihydroquinoxalin-2-amine, 
4H-benzo[b][1,4]thiazin-2-amine, and 1,6-dihydropyrazine-2,3-
dicarbonitrile derivatives in the presence of CSA (Scheme 36) [244].

4.1.19. Synthesis of β-amino ketones through a Mannich 
reaction
The number of articles has been committed to the introduction and 
applications of valuable eco-friendly catalysts [245]. The most 
straightforward and useful strategies for the synthesis of such catalysts 
are the attachment of organic or inorganic materials to various solid 
supports. These catalysts have good advantages such as moisture 
resistance, greater selectivity, low toxicity, air tolerance, easier 

handling, and low cost which are some of the advantageous features of 
this method that make it a viable alternative to non-catalytic methods.

The Mannich reaction is an very important carbon–carbon bond-
forming reaction in organic synthesis [246]. It is used for the synthesis 
of β-amino carbonyl compounds, which are important synthetic 
intermediates for various pharmaceuticals and natural products [247]. 
Various methods have been developed for this reaction but none of 
them was gave satisfactory results. Hence, Hayeniaz et al. [248] have 
been developed an alternative method for the synthesis of β-amino 
carbonyl compounds in the presence of CSA with significant yields 
(Scheme 37).

4.1.20. Synthesis of 4,4’-(arylmethylene)bis(3-methyl-1-phenyl-
1H-pyrazol-5-ols)
Pyrazlone compounds were rewarded much interest for their 
variety of biological activities such as antitumor [249] and cytokine 
inhibitors [250]. The compounds which are contains two pyrazolone 
ring can be used as extract ant for some metal ions, and ligands. 
Moreover, these compounds are applied as insecticides, pesticides, 

Scheme 34: Synthesis of 2-amino-4,6-diphenylnicotinonitriles.

Scheme 35: Synthesis of 1,4-dihydropyridines.

Scheme 36: Synthesis of 1-amino amide, 3,4-dihydroquinoxalin-2-amine, 4H-benzo[b][1,4]thiazin-2-amine and 1,6-dihydropyrazine-
2,3-dicarbonitrile derivatives in the presence of CSA.
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and fungicides. The formation of these compounds involves the 
Knoevenagel synthesis of the corresponding arylidenepyrazolones 
and its base promoted Michael reaction and also one-pot tandem 
Knoevenagel-Michael reaction of arylaldehydes with two equivalents. 
Various reports are available in literature for the synthesis of these 
compounds but these methods show some disadvantages as well as 
advantages. Hence, Baghizadeh et al. [251] have been developed for 
the construction of C-C bond in the presence of CSA (Scheme 38).

5. INORGANIC TEMPLATES

5.1. PSA [11]
A 50 mL reaction flask was fitted out with a constant-pressure 
dropping funnel. DHAMP (7.5 mmol) was charged into the flask 
and chlorosulfonic acid (22.5 mmol) in CH2Cl2 (10 mL) was added 
dropwise over a period of 15 min at r.t. After completion of the 
addition, the mixture was agitated for 2 h, while the residual HCl was 
eliminated by suction. Then, the mixture was washed with excess 
amount of dried CH2Cl2. Finally, a solid white powder was obtained 
after drying.

5.1.1. Synthesis of indazolo [1,2-b]-phthalazinetriones
The construction of novel heterocyclic compounds is continuously 
great interest due to their wide range of various applications. Among 

them, phthalazine moiety containing heterocyclic compounds is interest 
because they show numerous pharmacological and biological activities. 
Phthalazine derivatives, which have two bridgehead nitrogen atoms in 
a fused ring system, possess cytotoxic, antimicrobial, anticonvulsant, 
antifungal, anticancer, and anti-inflammatory activities. Moreover, 
these compounds exhibited good promise as new luminescent materials 
or fluorescence probes. Several reports are available in literature for 
the synthesis of these compounds but the reported methods show some 
disadvantages as well as advantages. Hence, Kiasat et al. [252] have 
been developed for the construction of phthalazine derivatives in the 
presence of PSA (Scheme 39).

5.1.2. Synthesis of bis-(4hydroxycoumarin-3-yl) methanes
Biscoumarins have recognized significant attention of synthetic and 
medicinal chemists due to their large scale of pharmaceutical and 
biological activities. A number of biscoumarins have also been found 
to be urease inhibitors. Although some types of these compounds could 
be isolated from plants, attempts have been made to use alternative 
catalysts for biscoumarin synthesis. A literature examine revealed that 
a number of catalytic methods have been developed for the synthesis 
of biologically important biscoumarins derivatives, especially the 
bridge substituted dimers of 4-hydroxycoumarin, by the reaction of 
4- hydroxycoumarin and various aldehydes. Although, each of the 
methods has its own disadvantages, such as harsh reaction conditions, 

Scheme 37: Synthesis of β-amino ketones in the presence of CSA.

Scheme 38: Synthesis of 4,4’-(arylmethylene)bis(3-methyl-1-phenyl-1H-pyrazol-5-ols).

Scheme 39: Synthesis of indazolo [1,2-b]-phthalazinetriones.
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long reaction time, and use of large excess of reagents, low yield 
and the use of toxic, corrosive, expensive, or non-reusable catalysts. 
Therefore, Kiasat et al. [253] have been developed for the production 
of biscoumarins derivatives in the presence of PSA (Scheme 40).

5.1.3. Synthesis of 14H-dibenzo[a,j]xanthenes and 1,8-dioxo-
octahydro-xanthenes
Xanthenes and benzoxanthenes are an essential category of organic 
compounds which have in recent times received a great deal of 
attention from medicinal and organic chemists due to their wide-
ranging of biological and therapeutic properties, including their, 
antibacterial, antiviral, and anti-inflammatory activities. In addition, 
these compounds are used in laser technologies, fluorescent material 
in the visualization of biomolecules, as well as being widely used as 
dyes.

There are different methods and are various reagents are using for 
the synthesis of xanthene and benzoxanthenes have been reported in 
the literature, including cyclodehydration, cyclisation of polyclic aryl 
triflate esters, intermolecular phenyl carbonyl-coupling reactions of 
benzaldehydes and acetophenones, trapping benzynes by phenols, 
and cyclocondensation between 2-hydroxy aromatic aldehydes and 
2-tetralone. However, each of the methods has its disadvantages, such 
as long reaction time, harsh reaction conditions, low yield, use of 
large excess of reagents, and the use of toxic, corrosive, expensive, 
or non-reusable catalysts. Therefore, Hajinasiri et al. [254] have been 
developed for the production of 14H-dibenzo[a,j] xanthenes and 
1,8-dioxo-octahydro-xanthenesin presence of PSA with good yields 
(Scheme 41).

5.1.4. Synthesis of DHPs
DHPs and its derivatives are significant category of organic compounds, 
due to these compounds have numerous medicinal characteristics 
including acting as cerebral anti ischemic agents in the treatment 
of Alzheimer’s disease and as a chemo sensitizer in tumor therapy. 
On the other hand, 1,4-DHP compounds show an important parts in 
medicinal chemistry, for example, amlodipine, nifedipine, felodipine, 

and nicardipine, which are the best selling drugs used in the treatment 
of cardiovascular diseases. Due to the important properties of these 
compounds, the researchers have been established numerous catalytic 
methods these methods show some drawbacks such as low product 
yields, harsh reaction conditions, and use of expensive solvents. 
Therefore, Rezayati et al. [255] have been developed inexpensive, 
efficient method for the synthesis of DHPs in the presence of PSA 
(Scheme 42).

5.1.5. Synthesis of benzimidazole, benzoxazole, and quinoxaline
A vast number of benzimidazole and benzoxazole derivatives are 
found in a variety of natural products and wide range of biologically 
active compound, especially including antiviral, anti-ulcerative, 
antihypertensive, antimicrobial, anticancer properties (colon cancer 
therapies), and as kinase inhibitors. Furthermore, it used as an imperative 
pharmacophore in modern drug discovery and exhibit substantial 
activity against several viruses such as human cytomegalovirus 
(HCMV), HIV, Herpes (HSV-1), influenza, and RNA. Furthermore, the 
synthesis of quinoxaline, its derivatives has abundant significance in 
organic synthesis. Quinoxaline derivatives are very considerable class 
of nitrogen-containing derivatives and have been shown to possess a 
broad spectrum of biological activities such as antifungal, antibacterial, 
anti-inflammatory, antidepressant, anticancer, anthelmintic agents, and 
antitumor drugs. Furthermore, quinoxaline is a part of the chemical 
assemblies of various antibiotics such as Levomycin, Echinomycin, 
and Actinoleutin are known to inhibit the growth of Gram-positive 
bacteria and are also active agent for various transplantable tumor. 
Besides these, they have been also used as building blocks for the 
synthesis of organic semiconductors, extraction of metal cations, and 
application in dyes. Due to the essential properties of these derivatives, 
the researchers have been established various catalytic methods, these 
methods show some drawbacks such as harsh reaction conditions, low 
product yields, and use of expensive solvents. Therefore, Rezayati et 
al. [256] have been developed inexpensive, efficient method for the 
synthesis of synthesis of Benzimidazole, Benzoxazole, and quinoxaline 
derivatives in the presence of PSA (Scheme 43).

Scheme 40: Synthesis of bis-(4hydroxycoumarin-3-yl) methanes.

Scheme 41: Synthesis of 14H-dibenzo[a,j]xanthenes and 1,8-dioxo-octahydro-xanthenes.

Scheme 42: Synthesis of 1,4-dihydropyridines.
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5.1.6. Synthesis of acylals
The protection of carbonyl group is an important step for a number of 
synthetic protocols. Reagents commonly used for protecting carbonyl 
groups include 2-mercaptoethanol, ethane dithiol, trialkyl orthoformate, 
acetic anhydride, and alcohols. Among these reagents, acetic anhydride 
is widely used for its robustness under neutral, basic, or acidic 
conditions. Acylals serve as important precursors for asymmetric allylic 
alkylation reactions, drug synthesis, and syntheses of 1-acetoxydienes 
and 2,2-dichlorovinylacetates (used for Diels–Alder reactions). 
Furthermore, acylals may also be used as cross-linking agents for 
cellulose in cotton. Moreover, though other methods show varying 
degrees of success, they have limitations such as prolonged reaction 
times, low yields, requirement of excess reagents or catalysts, use of 
toxic solvents, and laborious work-up procedures. Therefore, Kim et 
al. [11] have been developed alternate milder and environmentally 
sustainable procedures for the preparation of acylals (Scheme 44).

5.1.7. Synthesis of α-hydroxyphosphonates (HPPs)
HPPs are an important class of organophosphorus compounds because 
of their wide range of biological activities, including anticancer, 
antibacterial, antiviral, and anti-oxidant activities. In addition, 
HPPs are structural analogs of α-hydroxyphosphonic acids and can 
act as enzyme inhibitors for farnesyl protein transferase, human 
protein tyrosine phosphatase, purine nucleoside phosphorylase, 
5-enolpyruvylshikimate-3-phosphate synthase, and human rennin. 
They also serve as useful precursors in the synthesis of other 
biologically important phosphonates such as α-amino, α-diketo, 
α-keto, α-halo, and α-acetoxy phosphonates. There are various 
catalytic methods available in literature; but some limitations such as 
harsh reaction conditions, low yields. Hence, Kim et al. [257], have 
been developed an inexpensive protocol for HPPs synthesis with easy 
accessibility, low toxicity solid acid catalyst, and the ability to proceed 
under neat condition and its anticancer activity (Scheme 45).

5.1.8. Synthesis of α-aminophosphonates
α-Aminophosphonates are an significant precursors in various 
biological and medicinal properties; the important characteristic 
of these derivatives, the researchers have been developed various 
catalytic methods, these methods show some disadvantages such as 
low product yields, use of expensive solvents, and harsh reaction 
conditions,. Therefore, Suresh Reddy et al. [258] have been developed 
inexpensive, efficient method for the synthesis of DHPs as well as they 
studied antioxidant-studies (Scheme 46).

6. BSA

6.1. Synthesis of BSA [259]
A 50 mL suction flask was equipped with a constant pressure dropping 
funnel. The gas outlet was connected to a vacuum system through water 
adsorbing solution and an alkali trap. Boric acid (1.55 g, 25 mmol) was 
charged in the flask and chlorosulfonic acid (8.74 g, ca. 5 mL, 75 mmol 
in 5 ml CH2Cl2) was added dropwise over a period of 1 h at room 
temperature under N2(g). Hydrogen chloride evolved immediately. 
After completion of the addition, the mixture was shaken for 85 min, 
while the residual HCl was eliminated by suction. Then, the mixture 

was washed with diethyl ether to remove the unreacted chlorosulfonic 
acid (1H NMR of BSA in Acetone-D6 show δ=12.218) and then add 
14.4 g silica gel and stirred those. Finally, dried and grayish solid 
material was obtained (21.6 g, 95.66%).

6.1.1. Synthesis of benzimidazoles
Benzimidazole moieties are classified under several classes of 
drugs, based on the possible substitution at different positions of the 
benzimidazole nucleus. Benzimidazole derivatives exhibit significant 
activity against several viruses such as HIV, HCMV, HSV-1, RNA, 
and influenza. Furthermore, they have been also used to act as 
topoisomerase inhibitors, selective NPYY1 receptor antagonists, 
angiotensin II inhibitors, potential antitumor agents, and smooth 
muscle cell proliferation inhibitors. In addition, benzimidazoles are 
very important precursors in organic synthesis. Vitamin B12 constitutes 
a milestone in the chemistry of benzimidazoles. Bisbenzimidazole is 
DNA-minor grove binding agents possessing anti-tumor activity. Due 
to the importance of Benzimidazole moieties, the researchers have been 
developed various methods and these are have some advantages and 
disadvantages. Hence, Sajjadifar et al. [260] have developed ecofriendly 
method with high yields in the presence of BSA (Scheme 47).

6.1.2. Synthesis of 1,5-benzodiazepine
Benzodiazepines are interesting compounds because of their therapeutic 
properties. Many members of this family are, in fact, nowadays, widely 
used as tranquilizing and anticonvulsant agents. Due to the significant 
biological properties, various researchers have introduced various catalytic 
methods; these are having some drawbacks such as high temperature, 
reaction time, and tedious work up procedure, to overcome this, Sajjadifar 
et al. [261] have developed new catalytic method using BSA with good 
yields, short reaction times, and water as solvent (Scheme 48).

6.1.3. Synthesis of substituted benzenes
Polyarylated aromatic propellers have fascinated a great deal of interest 
in leading-edge carbon nanotechnology for increasing new efficient 
molecular rotors and new electroluminescent materials for flat-panel 
displays. These organic compounds have unique photo physical, 
chemical, and optical properties that make them useful as building blocks 
for material sciences. There are various reports regarding application of 
Π-conjugated polyaromatics, macromolecules. Due to this importance, 

Scheme 43: Synthesis of benzimidazole, benzoxazole, and quinoxaline.

Scheme 44: Synthesis of acylals.

Scheme 45: Synthesis of α-hydroxyphosphonates.
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Safaei et al. [262] have been developed new catalytic method for the 
preparation of substituted benzenes in the presence of BSA (Scheme 49).

6.1.4. Synthesis of xanthene derivatives
The construction of xanthenes and benzoxanthenes has gained 
substantial consideration in organic synthesis due to their wide range 
of biological and therapeutic properties. Because of this, the scientist 
in various chemical laboratories has been developed different methods 
for the synthesis of xanthene compounds, but some of these methods 

have some drawbacks. To overcome this drawbacks, Moghanian 
et al. [263] have been developed new green chemical method for the 
synthesis of xanthenes using BSA (Scheme 50).

6.1.5. Synthesis of aliphatic and aromatic 1H-indazolo[2,1-b]
phthalazinetriones
In recent years, amalgamation of nitrogen-containing heterocyclic 
compounds has received rising attention due to their applications to 
biologically active pharmaceuticals, agrochemicals, and functional 

Scheme 46: Synthesis of α-aminophosphonates.

Scheme 47: Synthesis of benzimidazoles.

Scheme 48: Synthesis of 1,5-benzodiazepine.

Scheme 49: Synthesis of substituted benzenes.

Scheme 50: Synthesis of xanthene derivatives.
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materials. Due to this importance, various methods are available 
in the literature. Among them, some of them show advantages and 
disadvantages. To overcome this, Soheilizad et al. [264] have been 
developed one pot synthesis of phthalazinetriones in the presence of 
BSA (Scheme 51).

7. TUNGSTO SULFONIC ACID (TSA)

7.1. Preparation of TSA [265]
To a 0.2 mol chlorosulfonic acid (23.304 g, 13.31 mL) in 250 mL 
round button flask equipped with ice-bath 0.1 mol (29.38 g), anhydrous 
sodium tungstate was added gradually. After the completion of 
addition, the mixture was shaken for 1 h. A yellowish-with solid (TSA) 
of 40 g was obtained.

7.1.1. Synthesis of the rapid aromatization of hantzsch 1, 
4-dihydropyridines
Karami et al. [265] have been reported simple, clean, and convenient 
method for the effective oxidation of 1,4-DHP with TSA to pyridine 
derivatives under mild and heterogeneous conditions (Scheme 52).

7.1.2. Synthesis of the N-nitrosation of secondary amines
Nitrosation chemistry has been familiarized as an active area for 
biological and organic chemists. Their strong carcinogenic and 
mutagenic properties of N-nitrosamines have produced substantial 
attraction in this view. Various methods are developed for the synthesis 
of N-nitrosation of seconday amines but the reported methods have 
some drawbacks to overcome this, Karami et al. [266] have been 
reported novel method for the synthesis of Nitrosation of secondary 
amines in green chemical methods (Scheme 53).

7.1.3. Synthesis of deoximation
The cleavage of oximes to restore ketones and aldehydes is an essential 
reaction due to oximes serve as well-organized protective groups for 
ketones and aldehydes and extensively used for the purification and 
characterization of carbonyl compounds. There are numerous methods 
available in the literature but it have some drawbacks to solve it 
Karami et al. [267] have been developed new sustainable method for 
the deoximation (Scheme 54).

7.1.4. Synthesis of 9-aryl 1,8-dioxooctahydroxanthenes
Xanthenes and its derivatives have received significant attention 
in recent years due to their wide range of biological and 
therapeutic properties. Due to this importance various methods 
are available in literature, but some of them shows advantages 

and disadvantages, due to this Karami et al. [268] have been 
developed innovate heterogeneous acid catalyst for the synthesis 
of xanthenes (Scheme 55).

7.1.5. Synthesis of dihydropyrimidine-thione
The usage of functionalized dihydropyrimidine-2(1H)-one/thione as 
strong calcium channel blockers, NPY antagonist, antihypertensive 
agents, due to their expanded properties such as antiviral, antibacterial, 
and antitumor properties, it can be concluded that these heterocyclic 
compounds play an important role in therapeutic, synthetic, and 
bioorganic chemistry. There are huge no of synthetic methods 
available in else ware, but some of methods shows long reaction 
times high temperature, and purification methods. Due to this, Karami 
et al. [269] have been developed new protocol for the synthesis of 
dihydropyrimidine-thione (Scheme 56).

7.1.6. Polycyclic aromatic phenazines and quinoxalines
Quinoxaline derivatives are associated with a wide-ranging 
biological effects such as riboflavin (Vitamin B2), agonists and 
antagonists of various receptors, agents with high antibacterial 
or antiviral activities (e.g., echinomycin, lenomycin, and 
actinomycin). Due to the importance of these compounds, the 
researchers have developed various methods, but some of them 
have drawbacks, to overcome this, Karami et al. [270] have been 
reported new catalytic method for the synthesis of quinoxaline in 
green conditions (Scheme 57).

Scheme 51: Synthesis of aliphatic and aromatic 1H-indazolo[2,1-b]phthalazinetriones.

Scheme 52: Synthesis of the rapid aromatization of hantzsch 1, 4-dihydropyridines.

Scheme 53: Synthesis of the N-nitrosation of secondary amines.

Scheme 54: Synthesis of deoximation.
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7.1.7. Synthesis of α-aminophosphonates
The α-aminophosphonates are biomimetic to naturally occurring 
amino acids with an notable structure. They play a key role in current 
synthetic organic chemistry and medicinal chemistry. Due to the 
importance the researchers have been developed numerous methods 
among them, Reddy et al. [271] have been reported green chemical 
method for the synthesis of targeted compounds under ultrasonications 
(Scheme 58).

7.1.8. Synthesis for the protection of aldehydic carbonyl group
Selective protection of aldehydic carbonyl groups by conversion to 
their corresponding acylals is an important component of multistep 
organic syntheses. A crucial property of the acylals formed in this 
process is their stability in neutral, basic, and acidic media. There 
are various reports available in the literature, but some of them show 
drawbacks, such as long reaction time and high reagent volume and so 
on. To overcome this problem, Kim et al. [262] have been developed 
novel catalytic method for the protection and deportection of carbonyl 
compounds (Scheme 59).

8. CONCLUSIONS

This review summarizes the various heterogeneous acid catalyzed 
different organic transformations that are of importance due to their 
numerous properties. This review includes organic templates such as 
MTSA, hybrid templates such as β-Cyclodextrins and CSAs. After 
that, we have focused inorganic templates such as PSA, BSA, and TSA 
using various organic transformations. Beside the literature examples, 
our own synthetic results are also involved.
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