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1. INTRODUCTION

Among the first-generation catalysts, Bronsted acids and 
bases were found to be widely used catalysts for many organic 
transformations [1-6]. However, their usage associated with some 
issues such as high economy, volatility, toxicity, and hazardous 
laboratory/industry outlets is the major limitations in their use as 
catalysts. However, catalysts adsorbed on silica gel were found 
beneficial to overcome these issues. This could be because of the 
voluntarily availability of silica gel, simple work-up procedure, long 
catalytic life and recyclability, eco-friendly nature, and the capability 
to accelerate the reactions to afford good to excellent product yields 
[1-27]. A recent review published by Kaur et al. summarized that few 
of the most important silica-supported catalysts which were prepared 
using heteropoly acids such as fluoroboric acid, polyphosphoric 
acid, sulfuric acid, and perchloric acid [13]. All these catalysts have 
been utilized for many organic transformations to prepare desired 
compounds which are most important for the pharmaceutical and 
chemical industries. Silica-supported Bronsted acid catalysts can be 
easily isolated from the reaction mixture by simple filtration and they 
are reusable after the activation therefore all these processes become 
eco-friendly. In addition to this, silica-supported materials are found to 
be superior over traditional homogeneous catalysts and heterogeneous 
catalysts because of their high thermal and mechanical stabilities and 
large surface area, low toxicity, greater selectivity, high selectivity and 
simplicity in handling, and reusability. Wastages and by-products can 
be effectively reduced in these catalytic systems. Our interest toward 
the thiocyanated products is mainly connected to their wide range 
applications of antiparasitic, antitumor, antifungal, activities, and their 
important uses in organic synthesis as synthons, medicinal chemistry, 
pharmaceutical chemistry, and agriculture chemistry [28-36]. Over a 
period of time, certain regioselective efficient thiocyanation methods 
have been put forward [37-40], including few recent reports from our 
laboratory [41-44]. Literature survey reveals that many electrophilic 

aromatic substitution protocols such as thiocyanation, nitration, 
sulfonation, and several other reactions have been reported using 
different catalysts under ultrasonic-assisted conditions including 
some recent reports from our laboratory [45-49] and silica-supported 
Bronsted acids were explored as efficient green and reusable catalysts 
for many electrophilic aromatic substitution reactions such as nitration 
and thiocyanation, sulfonation, and several other reactions under 
different reaction conditions such as conventional-reflux conditions, 
microwave-assisted conditions, and ultrasonic sound-assisted 
conditions, including few recent reports from our laboratory [50-53], 
however, silica-supported Bronsted acids such as SiO2-KHSO4 and 
SiO2-HClO4 have not been explored as heterogeneous reusable green 
catalysts so far for thiocyanation reactions under ultrasonic conditions.

Encouraged by these features, we wish to report here in a clean and 
environmentally friendly protocol for thiocyanation of aromatic 
compounds and heteroaromatic compounds with NH4SCN within the 
sight of by utilizing silica upheld heterogeneous reusable impetuses 
SiO2-KHSO4 and SiO2-HClO4 under customary and ultrasonic waves 
helped conditions [54-60].

2. EXPERIMENTAL

General laboratory desktop chemicals are utilized in the present study, 
procured from Avra Synthesis (India), SD-Fine Chemicals (India), and 
Loba (India). Simple laboratory (1.5 L) Sonicator is used in this study.
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2.1. Preparation of SiO2-HClO4 and SiO2-KHSO4 Catalysts
Four grams (100–200 mesh graded) silica gel (SiO2) was added to 
(20 mmol) HClO4 in distilled water (25 ml), and this mixture was 
stirred for about 30 min at room temperature, since to the adsorption 
of KHSO4 onto the surface of the silica gel grains. Then, the water 
was removed in vacuum the resultant powder was concentrated in 
an oven at 393 K temperature for 2–3 h to get SiO2-HClO4 catalyst. 
Same procedure is used for the preparation of SiO2-KHSO4 catalysts. 

2.2. X-ray Diffraction (XRD) and Scanning Electron Microscopy 
(SEM) Analysis of SiO2-HClO4 and SiO2-KHSO4 Catalysts
The as-prepared catalyst is characterized by XRD and SEM methods, 
its corresponding results are shown in Figures 1-4, SEM pictures of 
SiO2-HClO4 and SiO2-KHSO4 catalysts under different magnifications 
in the range of 50 µm–500 µm reveal non-uniformed morphologies 
are with flakes and polynomial cubic crystals were distributed in the 
grain like catalyst species. All these observations are conforming that 
the heterogeneous behavior of these SiO2-HClO4 and SiO2-KHSO4 
catalyst.

2.3. Conventional Reflux Method for Synthesis of Thiocyanated 
Aromatic and Heteroaromatic Compounds Using SiO2-HClO4 and 
SiO2-KHSO4

Aromatic or heteroaromatic compound (10 mmol), NH4SCN (10 
mmol), and acetonitrile as dissolvable were taken into a cleaned and 
dried round base flask then, at that point add the ideal measure of 
the impetus SiO2-HClO4 or SiO2-KHSO4. Furthermore, mixed this 
response blend under reflux until the response is finished which 
is shown by thin-layer chromatography (TLC). After the total 
change, the impetus in the response blend was disconnected by 
straightforward filtration, and response combination is killed with 
aq. NaHCO3 arrangement, and afterward added with ethyl acetate 
derivation. The natural organic layer was then isolated by utilizing 
isolating channel, and dried over Na2SO4, decontaminated by 
section chromatography utilizing the combination of ethyl acetate 
derivation, hexane, and dried under vacuum to acquire the eventual 
outcome.

2.4. Ultrasonically Assisted Method for Synthesis of Thiocyanated 
Aromatic and Heteroaromatic Compounds Using SiO2-HClO4 and 
SiO2-KHSO4

For the ultrasonic-assisted thiocyanation aromatic or heteroaromatic 
compound (0.1 mol), the optimum amount of the catalyst (SiO2-
KHSO4 or SiO2-HClO4) was added to the mixture followed by 
electrophile generating agent NH4SCN (10 mmol) and 25  ml of 
dissolvable (acetonitrile) were taken in to a cleaned and dried round 
base carafe (RBF) and put into an ultrasonicator. Then, at that point, 
the response combination is sonicated at ordinary room temperature 
until the response was finished. Response was checked by TLC. 
After complete transformation as distinguished by TLC, then, at that 
point coming about response combination was extinguished with 
water, and is killed by aq. NaHCO3, and afterward added with ethyl 
acetate derivation. The natural organic layer was isolated by utilizing 
isolating pipe and dried over Na2SO4 and concentrated under vacuum, 
the subsequent items were separated by section chromatography 
utilizing the combination of ethyl acetic acid derivation and hexane 
as eluent to get unadulterated item. The mechanism behind the 
sonochemical effects in liquids is “the phenomenon of formation of 
acoustic cavitation.” The ultrasonic waves (with >20 kHz frequency) 
cause agitation, when these (US) waves are transmitted through liquid 
sample. These ultrasonic waves propagate into the liquid media and 
result high-pressure (compressions) and low-pressure (rarefactions) 

Figure 3: X-ray diffraction – patterns of SiO2-KHSO4 catalyst.

cycles alternatingly. During rarefactions, high intensive sound waves 
can generate very small vacuum cavities in the liquid, which were 
collapse violently (known as cavitation) during compression by 
releasing very high localized thermal energy, this energy causes for 
our desired chemical transformations. 

Figure 2: SEM Morphologies of SiO2-HClO4 catalyst.

Figure 1: XRD - patterns of SiO2-HClO4 catalyst.
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Table 1: Optimization SiO2-HClO4 and SiO2-KHSO4 
catalysts for thiocyanation of indole

Entry SiO2-HClO4 SiO2-KHSO4

Amt. of catalyst Yield (%) Amt. of catalyst Yield (%)
1 0.10 gm 51 0.10 gm 45
2 0.15 gm 89 0.15 gm 80
3 0.25 gm 92 0.25 gm 84
4 0.30 gm 92 0.30 gm 85
5 ---- ---- 0.35 gm 85

3. RESULTS AND DISCUSSION

3.1. Optimization of Catalysts
In this present work, we have reported thiocyanation of aromatic 
and heteroaromatic compounds with NH4SCN using reusable silica-
supported catalysts such as SiO2-HClO4 or SiO2-KHSO4 (Figure  5) 
under conventional conditions in acetonitrile solvent as well as 
ultrasonically assisted conditions (Scheme 1).

In the beginning, we optimized the catalyst (SiO2-HClO4 or SiO2-
KHSO4) quantity for thiocyanation reaction. We accomplished the 
thiocyanation reactions using various quantities of SiO2-HClO4 
and SiO2-KHSO4 catalysts (Scheme 2, Table  1). Data presented in 
Table  1 reveal that the maximum conversions occurred when 0.25 
gm SiO2-HClO4 and 0.3 gm SiO2-KHSO4 are used as catalysts. 
A  further increase in the catalyst quantity did not appreciably affect 
the conversion. Data given in Table  1 further denote that the best 
results were reported with SiO2-HClO4 over a SiO2-KHSO4 catalyst. 
This could be attributed to the fact that HClO4 is a stronger acid than 
KHSO4. To check the reusability of the catalysts (SiO2-HClO4 and 
SiO4-KHSO4), the catalysts were isolated from the reaction mixture 
by simple filtration and washed with CH3COOC2H5. After drying, the 
catalyst was activated under the same experimental conditions set and 
used again to verify the reactions. The catalyst is recycled for about 
4–5 times showing a slight reduction of activity during the consecutive 
use of the recovered catalyst this data compiled in Table  2, and has 
graphically represented, as shown in Figure 1.

Perchloric corrosive is a very corrosive (pka = −15–−10), which is a 
productive corrosive than H2SO4 and HNO3 acids. It can give solid 
causticity negligible obstruction since perchlorate is more fragile 
nucleophile. KHSO4 produces an acidic climate by the total protolysis 
of the sulfate particle (HSO4), without decay. Thiocyanation of sweet 
smelling and heteroaromatic intensifies continues smoothly with 
ammonium thiocyanate using silica-supported perchloric acid and 

Scheme 1: Schematic representation showing synthesis of 
thiocyanated aromatic and heteroaromatic compounds using 
SiO2-KHSO4 and SiO2-HClO4.

Scheme 2: Adsorption of HClO4 or KHSO4 on to the surface of 
silica gel grains (SiO2).

potassium bisulfate catalysts under reflux conditions in acetonitrile 
medium. Tables  3 and 4 clearly demonstrate that silica-supported 
perchloric acid is efficient over silica-supported potassium bisulfate in 
terms of the obtained reaction times and yields. SiO2-HClO4 triggered 
reaction was completed in 2.5–6 h time, while 3–8 h time was required 
for SiO2-KHSO4 catalyst. Phenol on thiocyanation gave 4-thiocyanato 
phenol. Similarly, other aromatic compounds (Entries 2–18) provided 
the corresponding thiocyanate products in good to achieve maximum 
conversion of substrates into products (Tables 3 and 4). The observed 
reaction times of all the studied thiocyanation reactions under reflux 
conditions are in between 2.5 h and 6 h with SiO2-HClO4 as a catalyst 
but in the case of SiO2-KHSO4 catalyst, the reaction times are 3 h–8 h. 
All the obtained thiocyanation products were confirmed by several 
spectroscopic analytical techniques [NMR(13C,1H) and Mass] and 
compared with the literature. Under ultrasonic-assisted condition, 
reaction times of all the above reactions were reduced from 2.5 to 6 h 
(under reflux) to 12–35 min. The high reaction rates with ultrasonication 
could be occurred due to increase in number of activation reactive 

Figure 4: Scanning electron microscope morphologies of SiO2-
KHSO4 catalyst.
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Table 2: Reusability of SiO2-HClO4 and SiO2-KHSO4 
catalysts under ultrasonication-assisted thiocyanation at RT 
(room temperature)

Reused cycle SiO2-HClO4 SiO2-KHSO4

R. T. Yield (%) R. T. Yield (%)
Ist run (Fresh) 15 min 92 17 min 85
IInd run 16 min 88 18 min 82
IIIrd run 18 min 85 18 min 80
IVth run 18 min 84 19 min 78
Vth run 20 min 84 20 min 77

Table 3: SiO2-HClO4 catalyzed thiocyanation of aromatic compounds under reflux and ultrasonic conditions

Entry Substrate Product Conventional Ultrasonication
R. T. Yield(%) R. T. Yield(%) 

1 Phenol 4-Thiocyanato phenol 4.5 h 82 22 min 89
2 o-Nitro Phenol 2-Nitro 4-thiocyanato phenol 3.5 h 78 20 min 86
3 Catechol Thiocyanato benzene 1,2 diols 2.5 h 82 21 min 88
4 3-Methyl phenol 3-Methyl 4-thiocyanato phenol 3 h 76 12 min 86
5 3-Methoxy phenol 3-Methoxy 4-thiocyanato phenol 2.5 h 80 13 min 88
6 Aniline 4-Thiocyanato aniline 3 h 79 15 min 84
7 2-Nitro Aniline 2-Nitro 4-Thiocyanato aniline 3 h 74 18 min 78
8 3-Methoxy Aniline 3-Methoxy 4-thiocyanato aniline 2.5 h 86 15 min 90
9 N, N- dimethylaniline 4-Thiocyanato N, N-dimethylaniline 3.5 h 72 19 min 85
10 Diphenyl amine 4-Thiocyanato diphenylamine 6 h 70 25 min 87
11 Pyrrole 2-Thiocyanato 1H-pyrrole 3.5 h 82 23 min 86
12 Furan 2-Thiocyanato furan 3.5 h 80 21 min 88
13 Thiophene 2-Thiocyanato thiophene 3 h 84 17 min 90
14 Indole 3-Thiocyanato 1H-indole 3 h 82 14 min 92
15 N-Methyl indole 3-thiocyanato N-Methyl indole 3.5 h 76 22 min 85
16 2-Methyl indole 2-Methyl 3-thiocyanato indole 3.5 h 77 20 min 86
17 5-Methoxy indole 5-Methyl 3-thiocyanato indole 3 h 83 19 min 88
18 5-Br indole 5-Bromo 3-thiocyanato indole 4 h 73 20 min 84

Figure 5: Bar diagram for recyclability SiO2-HClO4 and SiO2-
KHSO4 catalysts (indole).

species [54-60]. The phenomenon is occurred by rapid local heating 
and pressure’s effect. When NH4SCN is added to the reaction system, 

SCN+ electrophile is generated in situ, which, in turn, attacked by 
the arene (aromatic or heteroaromatic ring) nucleophile, to produce 
products the proposed mechanism shown in the Scheme 3.

3.2. Spectroscopic Analytical Data for Few Typical Compounds
(1) 4-Thiocyanato phenol:

MP: 45–49°C.

IR (cm−1, KBr): 833, 1099, 1171, 2160, 3421.
1H-NMR (400 MHz, CDCl3): (ppm) 5.88(1H, s, OH), 6.87(2H, d, 
J=8Hz, H2, H6), 7.45(2H, d, J=8Hz, H3, H5).
13C-NMR (100 MHz, CDCl3): (ppm) 112.2 (SCN), 113.3 (C, C4), 
117.5 (CH2, C2, C6), 134.1 (CH2, C3, C5), 158.1 (C, C1).

MS (70eV, EI): m/z (%) = 151[M+], 123, 95, 80, 71, 65.

Yields: 89% (With SiO2-HClO4), 84% (With SiO2-KHSO4).

(2) 2-Nitro 4-Thiocyanato phenol:

MP: 70–74°C.

IR (cm−1, KBr): 848, 893, 1258, 1418, 1524, 2155, 3265.
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Table 4: SiO2-KHSO4 catalyzed thiocyanation of aromatic compounds under reflux and ultrasonic conditions

Entry Substrate Product Conventional Ultrasonication
R. T. Yield(%) R. T. Yield(%) 

1 Phenol 4-Thiocyanato phenol 6 h 78 25 min 84
2 o-Nitro Phenol 2-Nitro 4-thiocyanato phenol 5.5 h 72 23 min 78
3 Catechol Thiocyanato benzene 1,2 diols 3 h 80 22 min 85
4 3-Methyl phenol 3-Methyl 4-thiocyanato phenol 3.5 h 76 18 min 83
5 3-Methoxy phenol 3-Methoxy 4-thiocyanatophenol 3 h 86 18 min 88
6 Aniline 4-Thiocyanato aniline 4 h 74 18 min 79
7 2-Nitro Aniline 2-Nitro 4-Thiocyanatoaniline 5 h 68 20 min 69
8 3-Methoxyaniline 3-Methoxy 4-thiocyanatoaniline 3 h 85 17 min 85
9 N, N- dimethylaniline 4-Thiocyanato N, N-dimethylaniline 4.5 h 65 21 min 74
10 Diphenyl amine 4-Thiocyanato diphenylamine 8 h 62 35 min 73
11 Pyrrole 2-Thiocyanato 1H-pyrrole 5 h 78 26 min 86
12 Furan 2-Thiocyanato furan 4 h 80 22 min 85
13 Thiophene 2-Thiocyanato thiophene 4.5 h 82 19 min 88
14 Indole 3-Thiocyanato 1H-indole 5 h 85 17 min 85
15 N-Methyl indole 3-thiocyanato N-Methyl indole 5.5 h 72 24 min 76
16 2-Methyl indole 2-Methyl 3-thiocyanato indole 4.5 h 77 25 min 84
17 5-Methoxy indole 5-Methyl 3-thiocyanato indole 3.5 h 82 20 min 84
18 5-Br indole 5-Bromo 3-thiocyanato indole 6 h 68 22 min 73

Scheme 3: Mechanism of showing recyclization of used SiO2-HClO4 and SiO2-KHSO4 catalysts in thiocyanation reaction.

1H-NMR (400 MHz, CDCl3): (ppm) 7.32  (1H, d, J=8.6  Hz, H6), 
7.78  (1H, dd, J=8.7, 2.3  Hz, H5), 8.38(1H, d, J= 2.2, 4.1Hz, H3), 
10.69 (1H, s, OH).
13C-NMR (100 MHz, CDCl3): (ppm) 108.9 (SCN), 114.7 (C, C4), 
121.8 (CH2, C6), 129.1 (CH2, C3), 132.8 (C, C2), 138.7 (CH2, C5), 
155.7 (C, C1).

MS (70eV, EI): m/z (%) =196 [M+], 178, 169, 151, 137, 124.

Yields: 86% (With SiO2- HClO4), 78% (With SiO2-KHSO4).

(3) Thiocyanatobenzene-1, 2 diols:

MP: 140–145°C.

IR (cm−1, KBr): 1280, 1511, 2163, 3298.
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1H-NMR (400 MHz, CDCl3): (ppm) 6.82  (1H, d, J=8.2  Hz, H6), 
6.89 (1H, dd, J=8.1, 3.9 Hz, H5), 6.93(1H, d, J= 3.9 Hz, H3), 9.62 (2H, 
s, OH).
13C-NMR (100 MHz, DMSO -d6): (ppm) 111.1 (C, C4), 113.2 (SCN), 
116.8 (CH2, C6), 119.2 (CH2, C3), 124 (C, C5), 145.9 (C, C2), 146.7 
(C, C1).

MS (70eV, EI): m/z (%) =167 [M+], 142, 133, 121, 110, 95, 85, 69, 52.

Yields: 88% (With SiO2- HClO4), 85% (With SiO2-KHSO4).

(4) 3-Methyl 4-thiocyanatophenol:

MP: 65–70°C.

IR (cm−1, KBr): 1240, 1571, 2163, 3318.
1H-NMR (400 MHz, CDCl3): (ppm) 2.45 (3H, s, CH3), 6.05 (1H, s, 
OH), 6.7  (1H, dd, J=8.2, 2.7  Hz, H6), 6.78  (1H, d, J= 2.6  Hz, H2), 
7.44 (1H, d, J= 8.6 Hz, H5).
13C-NMR (100MHz, CDCl3): (ppm) 20.5 (CH3), 110.8 (SCN), 111.9 
(C, C4), 115.2 (CH2, C6), 117.8 (CH2, C2), 135 (CH2, C5), 142.9 (C, 
C3), 157.9 (C, C1).

MS (70eV, EI): m/z (%) =165 [M+], 147, 136, 120, 110, 95, 85, 68, 51.

Yields: 86% (With SiO2- HClO4), 83% (With SiO2-KHSO4).

(5) 3-Methoxy 4-thiocyanatophenol:

MP: 138–142°C.

IR (cm−1, KBr): 797, 858, 1202, 2153, 3358.
1H-NMR (400 MHz, DMSO -d6): (ppm) 3.91 (3H, s, OCH3), 6.45 (1H, 
dd, J= 8.1-3.9 Hz, H6), 6.56 (1H, d, J= 4.1 Hz, H2), 7.38 (1H, d, J= 
7.8 Hz, H5), 9.92 (1H, s, OH).
13C-NMR (100MHz, DMSO -d6): (ppm) 55.8 (OCH3), 97.9 (C, C4), 
99.8 (CH2, C2), 108.8 (C, C6), 112.1 (SCN), 136 (CH2, C5), 158.9 (C, 
C3), 163 (C, C1).

MS (70eV, EI): m/z (%) = 181 [M+], 165, 156, 137, 123, 112, 95, 78, 
68.

Yields: 88% (With SiO2- HClO4), 88% (With SiO2-KHSO4).

(6) 4-thiocyanato aniline:

MP: 50–54°C.

IR (cm−1, KBr): 822, 1179, 1384, 1496, 2147, 3348, 3419.
1H-NMR (400 MHz, CDCl3): (ppm) 3.95 (2H, s, N-H), 6.65 (2H, d,  
J= 8.6 Hz, H2, H6), 7.37 (2H, d, J= 8.6 Hz, H3, H5).

13C-NMR (100MHz, CDCl3): (ppm) 110.3 (C, C4), 113.2 (SCN), 115.6 
(CH2, C2, C6), 134.6 (CH3, C3, C5), 148.8 (C, C1).

MS (70eV, EI): m/z (%) =150 [M+], 123, 95, 80, 71, 65.

Yields: 84% (With SiO2- HClO4), 79% (With SiO2-KHSO4).

(7) 2-Nitro 4-thiocyanato aniline:

MP: 105–110 °C.

IR (cm−1, KBr): 823, 892, 1341, 1508, 2155, 3360, 3478.
1H-NMR (400 MHz, CDCl3): (ppm) 6.36 (2H, s, N-H), 6.89 (1H, d, 
J= 8.7 Hz, H6), 7.57 (1H, dd, J= 8.6, 2.3 Hz, H5), 8.39 (1H, d, J=2.5  
Hz, H3).
13C-NMR (100MHz, CDCl3): (ppm) 109.9 (C, C4), 111.5 (SCN), 121.6 
(CH2, C6), 130.9 (CH2, C3), 131.8 (C, C2), 137.8 (CH2, C5), 144.9  
(C, C1).

MS (70eV, EI): m/z (%) =195 [M+], 168, 149, 136 121, 105.

Yields: 78% (With SiO2- HClO4), 69% (With SiO2-KHSO4).

(8) 3-methoxy 4-thiocyanato aniline:

MP: 98–101°C.

IR (cm−1, KBr): 825, 1019, 1212, 1333, 1629, 2148, 2917, 3377, 3444.
1H-NMR (400 MHz, CDCl3): (ppm) 3.88 (3H, s, OCH3), 6.39 (2H, m, 
N-H), 6.44 (1H, dd, J= 7.8-4.1 Hz, H6), 6.48 (1H, d, J=3.9 Hz, H2), 
7.38 (1H, d, J= 7.6 Hz, H5).
13C-NMR (100MHz, CDCl3): (ppm) 55.96 (OCH3), 97.81 (C, C4), 
99.03 (CH2, C2), 108.05 (CH2, C6), 112.15 (SCN), 135.36 (CH2, C5), 
151.01(C, C3), 159.75 (C, C1).

MS (70eV, EI): m/z (%) = 180 [M+], 153, 134, 121 116, 95.

Yields: 90% (With SiO2- HClO4), 85% (With SiO2-KHSO4).

(9) N, N-dimethyl 4-thiocyanato aniline:

MP: 71–75°C.

IR (cm−1, KBr): 808, 1069, 1221, 1373, 1602, 2148, 2917, 3424.
1H-NMR (250 MHz, CDCl3): (ppm) 3.05 (6H, s, CH3), 6.68 (2H, d, 
J=10 Hz, H2, H6), 7.44 (2H, d, J= 9.8 Hz, H3, H5),
13C-NMR (100MHz, CDCl3): (ppm) 41.01 (C, C4), 107.6 (SCN), 111.9 
(CH2, C2), 113.1 (CH2, C6), 134.4 (CH2, C3), 135.7 (CH2, C5) 150.97 
(C, C1).
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MS (70eV, EI): m/z (%) = 178 [M+], 153, 135, 121 115, 95.

Yields: 85% (With SiO2- HClO4), 74% (With SiO2-KHSO4).

(10) 2-Thiocyanato 1H-pyrrole:

IR (KBr, cm−1): 736, 1022, 1123, 1230, 1368, 1424, 1709, 2158, 3677.
1H-NMR (250 MHz, CDCl3): (ppm) 6.33 (1H, s, H4), 6.68 (1H, s, H3), 
7.05 (1H, s, H5), 8.66 (1H, brs, N-H).
13C-NMR (100 MHz, CDCl3): (ppm) 102.94 (CH, C4), 110.99 (CH, 
C3), 111.99 (SCN), 120.20 (CH, C5), 124.43 (C, C2).

Yields: 86% (With SiO2- HClO4), 86% (With SiO2-KHSO4).

(11) 3-Thiocyanato 1H-indole:

MP: 72–74°C.

IR (cm−1, KBr): 744, 1238, 1455, 2158, 3117, 3404.
1H-NMR (400 MHz, CDCl3): (ppm) 7.22-7.28 (2H, m, H5, H6), 7.33-
7.38 (1H, m, H7), 7.39 (1H, d, J= 4 Hz, H2), 7.69-7.75 (1H, m, H4), 
8.70 (1H, s, N-H).
13C-NMR (100 MHz, CDCl3): (ppm) 91.8 (C, C3), 112.1 (CH2, C7), 
113.4 (SCN), 117.8 (CH2, C5), 122.1 (CH2, C6), 122.9 (CH2, C4) 128.2 
(C, C3a), 131.1 (CH2, C2), 135.8 (C, C7a)

MS (70eV, EI): m/z (%) =174 [M+], 141, 121, 136 91, 77.

Yields: 92% (With SiO2- HClO4), 85% (With SiO2-KHSO4).

(12) 1-Methyl 3-Thiocyanato 1H-indole:

MP: 74–78°C.

IR (cm−1, KBr): 666, 758, 1245, 1516, 2152, 2925, 2948.
1H-NMR (250 MHz, DMSO-d6): (ppm) 3.36  (3H, s, CH3), 7.25-
7.35 (2H, m, C5, C6), 7.59 (1H, d, J= 7.6, C4), 7.67 (1H, d, J= 7.3, C7), 
7.98 (1H, s, H2).
13C-NMR (100 MHz, DMSO-d6): (ppm) 33.3 (C, C3), 88.4 (CH2, C7), 
111.5 (CH2, C5), 112.8 (SCN), 118.4 (CH2, C6), 121.9 (CH2, C4), 123.7 
(CH3, C1) 128.6 (C, C3a), 137.1 (CH2, C2), 137.3 (C, C7a).

Yields: 85% (With SiO2- HClO4), 76% (With SiO2-KHSO4).

(13) 2-Methyl 3-Thiocyanato 1H-indole:

MP: 97–100°C.

IR (cm−1, KBr): 656, 744, 1235, 1298, 1406, 2153, 3328.
1H-NMR (250 MHz, CDCl3): (ppm) 2.54 (3H, s, CH3), 7.15-7.20 (2H, m, 
C5, C6), 7.40 (1H, t, C4), 7.55 (1H, t, C7), 11.95 (1H, s, N-H).
13C-NMR (100 MHz, DMSO-d6): (ppm) 12.1 (C, C3), 87.4 (CH2, C7), 
112.5 (CH2, C5), 112.5 (SCN), 118.1 (CH2, C6), 121.4 (CH2, C4), 122.7 
(CH3) 128.6 (C, C3a), 136.1 (C, C2), 143.3 (C, C7a).

Yields: 86% (With SiO2- HClO4), 84% (With SiO2-KHSO4).

(14) 5-Methoxy 3-Thiocyanato 1H-indole:

MP: 120–125°C.

IR (cm−1, KBr): 623, 710, 804, 921, 1238, 1292, 1456, 1488, 2155, 
3138, 3293.
1H-NMR (250 MHz, CDCl3): (ppm) 3.88 (3H, s, CH3), 6.94 (1H, d, J= 
10 Hz, H6), 7.17 (1H, s, H4), 7.25 (1H, d, J= 10 Hz, H7), 7.41 (1H, s, 
H2), 8.30 (1H, s, brs, N-H).
13C-NMR (100 MHz, DMSO-d6): (ppm 55.5 (C, C3), 89.4 (CH2, C7), 
99.9 (CH2, C6), 112.9 (SCN), 113.5 (C, C5), 114.4 (CH2, C4), 128.8 
(OCH3), 131.5 (C, C3a), 133.8 (CH2, C2), 155.2 (C, C7a).

Yields: 88% (With SiO2- HClO4), 84% (With SiO2-KHSO4).

4. CONCLUSION

We have revealed here thiocyanation of aromatic and heteroaromatic 
compounds with NH4SCN by utilizing SiO2-HClO4 and SiO2-KHSO4 
(silica upheld Bronsted acids) impetuses under reflux and ultrasonically 
helped conditions. High item yields and shortening of response times 
are the major advantages of these protocols.
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