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1. INTRODUCTION

Industrial and urban activities have contributed during the past few 
decades to the increase in metal contamination in marine ecosystems 
and directly influencing the coastal areas through sewage rejection and/
or deposition of contaminated atmospheric particulate matter [1,2]. 
Heavy metals are considered dangerous to the aquatic ecosystem 
or humans because of their non-biodegradability, bioaccumulation, 
persistent, ubiquitous, and toxic character [3]. Once they reached the 
aqueous systems, they are adsorbed and accumulate on suspended 
particles that sink rapidly to the bottom and strongly attach to sediments 
as final reservoirs [4]. Environmental factors, such as sediment 
properties (e.g., organic matter [OM] and clay content), are important 
in explaining the sources and distribution of heavy metals. Thus, the 
ability of sediments to adsorb both organic and inorganic contaminants 
makes sediment analysis a valuable tool for the assessment of the 
quality of aquatic environment [5]. Lead and cadmium have been 
included in the regulations of the European Union for hazardous 
metals [5], while chromium and nickel are listed as hazardous metals 
by the United States Food and Drug Administration [6]. In the Ivory 
Coast, the coastline covers an area of 23.253 km2 or 7% of the area  [7]. 
It produces about 41 million m3 of gas per year and experiences intense 
maritime traffic [7]. It is the seat of industrial, commercial, tourist, and 
fishing activities [7]. The dynamism of its activities is supported by 
the proximity of the port of Abidjan and maintained by the important 
migratory flow from the Central and Northern regions. In addition, 
the Ivorian coastal area is full of numerous oil platforms. All these 
activities are likely to pollute it. Studies carried out in the Ebrié 
Lagoon Rodrigue et al., Wognin et al., Toure et al., Konan and Albert, 

Coulibaly et al., and Keumean et al. [8-13] with (Cd, Cu, Pb, and Zn); 
(Ni, Cu, Cd, and Zn); (Cd, Zn, Fe, Cu, Mn, and Hg); (Cd, Co, Cu, Ni, 
Pb, and Zn); (Cd, Zn, Fe, Cu, Mn, and Hg); (Pb, Zn, Cu, Cd, and Cr), 
respectively, have shown the presence of certain heavy metals in the 
sediments. However, in Ivory Coast, very few studies have been carried 
out with a multitude of heavy metals as in this study, namely, Zn, Cr, 
Ni, Pb, Cu, Cd, V, Mn, Fe, and As at the level of the Ebrié Lagoon but 
mainly on the coastal area. Studies on heavy metals pollution in coastal 
areas of Cote d’Ivoire are still limited [13]. Furthermore, studies on 
metal pollution in coastal sediments, and their ecological impacts on 
natural ecosystems, have increased in the past few decades Ngeve 
et al., El Zrelli et al., Jamshidi and Bastami, Ahmed et al., Goher et al., 
Mirzaei et al., and Wang et al. [14-20]. For this reason, it is necessary 
to point out that ecological studies are paramount to help managing the 
local environment. In the present study, we aimed to (1) investigate 
the current pollution status of heavy metal (Zn, Cr, Ni, Pb, Cu, Cd, 
V, Mn, and As); (2) evaluate the ecological risks of heavy metals in 
an integrated system by comparing the present data with those of 
sediment quality guidelines (SQG).
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ABSTRACT
The level and the ecological risk assessment of heavy metals were evaluated in surface sediments of 72 samples from 12 
stations located in the Toukouzou Hozalem-Assinie zone along the Ivorian coast using X-ray fluorescence spectroscopy. 
The heavy metals contamination was assessed using pollution indices: Modified degree of contamination (mCd), potential 
acute toxicity (TU), and potential ecological risk index (RI). The results revealed that they are ranked in descending order: 
Fe>Cr>Mn>V>Zn>Ni>Pb>As>Cu>Cd and the mCd values are between 4.15 and 7.86 which reflect a high degree of 
contaminations. The highest total toxic units (ΣTUs) were calculated in sediment samples with Cr and Cd presenting the higher 
TUs compared to the rest of heavy metals and contributed the most (80%) to the overall TUs. It reveals a high potential toxicity 
for the marine ecosystems in the Ivorian coast. Comparison with sediment quality guidelines (TEC, PEC, PEL, and mPECq) 
showed that Cr, Cd, and As are 75% toxic to most species of aquatic organisms living in sediments. Potential ecological RI 
values indicate moderate ecological risk for Cr, considerable for As, and very high for Cd for most sites.
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2. MATERIALS AND METHODS

2.1. Sampling
The study area is located in a coastal strip with about 204 km long 
from Toukouzou (TKZ)-Hozalem to Assinie. The region is extended 
between latitude 5°15’0’’ N and 5°00’0’’ N and longitude 4°35’0’’ W 
and 3°20’0’’ W (Figure 1). Superficial sediment samples were collected 
in November 2017–February 2019, from 12 different stations: TKZ, 
Addah, Adjué, Jacqueville (JAC), Adjouffou (ADJ), Bassam-Modeste 
Plage (BMP), Bassam-Modeste Lagune (BML), Azurety (AZT), 
Assinie-Plage, Assinie-Lagune (AL), Assinie Canal Droite (ACD), 
and Assinie Canal Gauche. Sampling activities were carried out in six 
campaigns over four seasons (GSS: Long dry season from January to 
March, GSP: Long rainy season from April to June, PSS: Short dry 
season from July to September, and PSP: Short rainy season from 
October to December), for a total of 72 samples.

2.2. Sediment Characterization
The clay, silt, and sand contents of the sediment samples were 
determined using laser particle size analyzer (Mastersizer 2000, 
Malvern, UK). Before analysis, all samples were treated with 37% 
H2O2 and 10% HCl to remove OM and carbonates. The carbonate 
concentration on the sediment was determined by Bernard calcimeter 
method [21].

For total OM (TOM) determination, 4 g of samples were combusted in 
an oven at 550°C for 4 h and 950°C for 2 h. TOM was determined by 
the following equation:

 ( ) B CTOM % *100
B
− =  

 
 (1)

Where, B and C are the weights of dried sediment before and after 
combustion in the oven, respectively.

2.3. Sample Analysis
Samples collected were dried in a room at ambient temperature (about 
23°C), ground with a vibratory ball mill (RETSCH GmbH, Type MM400; 
42781 Haan, Germany), and sieved at 63 µm. Subsequently, the samples 

were mixed with 10% of binder (Fluxana BM-0002-1-CEROX) and 
5 g pellets were made using 15-ton pressure (Specac; Atlas TM manual 
15 Ton Hydraulic Press, England) before metals analysis by the X-ray 
fluorescence (XRF) method (energy-dispersive XRF spectrometry: 
EDXRF; Spectro-XEPOS, AMETEK, France).

The accuracy and precision of the XRF analyses were verified by 
repeated measurements of reference materials to the STANDARD 
IGGE IRMA, GSR-5 (Geochemical Standard Reference sample rock) 
for standardization and to monitor the performance of the instrument 
with known elementary compositions.

2.4. Evaluation of the Sediment Contamination
Modified degree of contamination (mCd), potential acute toxicity 
(TU), SQGs, and potential ecological risk index (RI) have been used to 
determine the levels of metal contamination in the sediments [19-22]. 
These tools can provide valuable information to elucidate different 
aspects of pollution.

2.5. mCd
The mCd was introduced to assess the overall contamination degree at 
a given site caused by multimetals. The mCd value can be calculated 
by Equation (2), [23].
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Where, n refers to the number of metals and contamination factor 
(Cf), the Cf suggested by Hakanson [24]. Based on mCd values, seven 
categories have been proposed to reflect the degree of contamination 
by heavy metals [23]:
•	 mCd <1.5: Very low degree of contamination;
•	 1.5≤ mCd <2: Low degree of contamination;
•	 2≤ mCd <4: Moderate degree of contamination;
•	 4≤ mCd <8: High degree of contamination;
•	 8≤ mCd<16: Very high degree of contamination;
•	 16≤ mCd<32: Extremely high degree of contamination and;
•	 mCd ≥32: Ultra-high degree of contamination.

Figure 1: Location map of the coastal zone (Toukouzou Hozalem-Assinie)
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2.6. Potential Acute Toxicity (TU)
For assessing the extent to which the aquatic organisms may be 
influenced by sediment pollution, potential acute toxicity can be 
estimated [6]. Potential acute toxicity of contaminants in sediment 
samples is the sum of the toxic units (ΣTU) defined as the ratio of the 
determined concentration of element i (Ci) to the probable effect level 
(PEL) value of element i (Pi) [25].

  TU 
PEL 

i
si

i

C
=  (3)

If the ΣTUs value is lower than 4, it indicates low toxicity; whereas if the 
ΣTUs value exceeds 4, it indicates moderate toxicity to an ecosystem [25].

2.7. SQG Method
Several indicators have been developed to evaluate sediment quality. 
Long and MacDonald [26] proposed four parameters to predict the 
potential biological threat to benthic organisms:
•	 TEC: Threshold effect concentration;
•	 PEC: Probable effect concentration;
•	 mPEC: Mean PEC quotient;
•	 PEL: Probable effect level.

The SQGs are important screening tools to investigate trace metal 
toxicities in freshwater aquatic ecosystems [27].

Adverse effects are expected to occur when contents are below 
consensus-based TEC, and adverse effects more commonly occur 
when contents are above the PEC.

However, if TEC ≤Mean concentrations ≤PEC, the potential risk 
cannot be ascertained from heavy metal concentrations alone. In 
addition, cumulative toxicities of the metals can be estimated by 
mPECq [28] and calculated as in Equation (4). Sediment is defined as 
toxic if mPECq>0.5 and non-toxic if mPECq <0.5 [27]:
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Where, n is number of heavy metals, Ci is the heavy metal concentration 
in sediment, and PEC is the PEC of each metal.

2.8. Potential Ecological RI
Potential ecological RI is used to estimate the heavy metals pollution 
degree in sediments [29]. RI is the sum of potential ecological risk of 
an individual metal i (Ei

r). It represents the sensitivity of a biological 
community to toxic substance and illustrates the potential ecological 
risk caused by contaminants.

The potential ecological RI of the multielements (RI) can be calculated 
through formulas:

 
1

n
i
r

i
RI E

=

=∑  (5)

         
i i i

E T C
r r f
= ×  (6)

  
  

      ( )
  

i
Ci sC if C

n

=  (7)

Tr
i is the biological toxic factor of an individual element i, with Cd 

= 30; Ni = 6; Pb = Cu = 5 and Zn = 1 [30]; As = 10; Cr=2 (Xu et al., 
2020); V=2; Mn=1.

Ci
f, Ci

s, and Ci
n are the Cf, the concentration in the sediment, and the 

background reference value for element i, respectively.

According to Hakanson [29], RI caused by heavy metals in surface 
sediments in coastal areas, could be classified into four categories:

• Low ecological risk: Eir <40, RI <150;

• Moderate ecological risk: 40 ≤Eir <80, 150 ≤RI <300;

• Considerable ecological risk: 80 ≤Eir <160, 300 ≤RI <600;

• Significantly high ecological risk: 160 ≤Eir <320, RI ≥600.

3. RESULTS AND DISCUSSION

3.1. Metal Concentrations in Coastal Sediments (TKZ Hozalem-
Assinie)
Comparative table of the contents of metal levels (mg/kg per dry 
weight) in the Ivorian coastal zone with those recorded in other areas 
of the world is presented in Table 1. The abundance order of these 
metals was found to be Fe>Cr>Mn>V>Zn>Ni>Pb>As>Cu> and Cd 
with mean concentrations of 19144.23; 431.30; 249.12; 54.59; 28.82; 
17.37; 8.39; 7.93; 7.57; and 3.08 mg/kg dry weight, respectively.

The means concentrations in the sediments of Cr (140.42–883.42 mg/
kg per dry weight), (Cd 1.08–3.88 mg/kg per dry weight), Fe (4510–
89,730 mg/kg per dry weight). and As (0.25–18.37 mg/kg per dry 
weight) were higher than the values (Cd = 0.25 ± 0.20 mg/kg and 
As = 1.13 ± 0.66 mg/kg); (Cr = 83.92 mg/kg and Cd = 1.45 mg/kg) 
reported by Coulibaly et al., Keumean et al. [12,13] in the Ebrie 
Lagoon, respectively. These low concentrations of metals in the areas 
might be due to less agro-chemical usage around the study areas and 
less industrial activities which are the major sources of heavy metal 
contamination in aquatic environments [13].

Furthermore, the comparison of heavy metals contents recorded herein 
with those reported in sediments from different regions of the world 
showed that the Cr, Cd, and Fe concentrations in surface sediments 
of Ivorian coastal are remarkably high (Table 1). This could be due to 
anthropogenic activities, petroleum, refineries, fuel, fossil fuel burning, 
and industrial waste [8].

In contrast, the concentrations of the other heavy metals analyzed 
(i.e., Zn, Ni, Cu, V, and Mn) were found to be low compared to those 
reported in other regions of the world and in the Ivorian coastal 
zone with the exception of the Persian Gulf coast (Table 1). These 
low concentrations of metals in the areas could be due to less agro-
chemical usage around the study areas and less industrial activities 
which are the major sources of heavy metal contamination in aquatic 
environments [12].

On the other hand, the values of Pb obtained were close to those 
obtained at Caspian Sea and Cameroon coast.

3.2. Sediment Classification
Clay, silt, and sand contents of sediment samples are presented in Table 1. 
Effects of TOM and grain size on the spatial variation of metals in the 
sediment are shown in several studies [30]. TOM is another parameter 
affecting heavy metal amount of sampled sediment. The content of TOM 
is increasing with decreasing grain size. Sediments enriched by OM react 
with metals and create metal complexes. Particle size analysis indicated 
that sandy sediment is dominant in the majority of sampling sites. Sand, 
clay+silt ranged from 92.09 to 98.51% and 0.6 to 1.36% respectively. 
The TOM was generally low. It ranged from 0.33% to 1.17% with 
an average of 0.51% (Table 2). In general, higher values of TOM are 
observed at sites AL and AP. It may be due to the lower turbulence of 
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water that allows sedimentation of fine-grained particles. Carbonate 
levels at the sampling sites range from 0.6% to 1.36%, with an average 
value of 0.82 ± 0.26%. The highest carbonate levels were observed at 
sites AL and AP, respectively (Table 1). The highest average values for 
CaCO3 and TOM were observed because these sites do not receive any 
wave’s energy from Ivorian Coast. Most organic materials are finally 
deposited in seabed sediments through a series of physical, chemical, 
and biological processes [30]. It may be due to the lower turbulence of 
water that allows sedimentation of fine-grained particles

3.3. mCd
The mCd values for the studied metals in the Ivorian coastal zone in 
sediments are listed in Figure 2. The mCd values of Zn, Cr, Ni, Pb, Cu, 
Cd, V, Mn, Fe, and As at 12 stations are between 4.15 and 7.86. Three 
sampling locations (TKZ, BML, and ADJ) could be categorized as having 
a highly mCd. The high mCd value at TKZ was due to the highest Cf 
values, with major contributions from Cd (Cf = 30.78) and Cr (Cf = 12.32). 
A high Cf of the trace metal implies a high-risk degree to the aquatic 
environment [31,32]. These results obtained confirm those obtained by 
Konan and Albert [11]. This state of Vridi channel is essentially due to 

high anthropogenic pressures doing on this estuary. Other elements, such 
as V, Zn, and As, also significantly contributed to the mCd values at TKZ. 
This appears to be due to refining fuel releases, oil, industrial and chemical 
waste, shipping, and oil traffic. Overall, all stations can be interpreted high 
degree of contamination using mCd classification.

3.4. Potential Acute Toxicity

The sums of the toxic units (ΣTU) for each of the sampling sites based 
on heavy metal concentrations are shown in Figure 3. ΣTU for all 
stations followed the descending order of Cr>Cd>Ni>As>Zn>Pb>Cu. 
The contribution of Cd and Cr to ΣTU was the highest (81.87%) 
compared to the other heavy metals. The moderate toxic risks of As and 

Table 1: Comparative table of the contents of metal levels (mg/kg per dry weight) in the Ivorian coastal zone with those recorded 
in other areas of the world 

Locations Zn Cr Ni Pb Cu Cd V Mn Fe As References
Ivorian coastal zone 

Mean 

8.57–
185.25

140.42–
883.42

13.7–
24.53

1.93–
46.43

5.58–
17.33

1.08–
3.88

25.33–
250.5

25.4–
2148.05

4510–
89730

0.25–
18.37

Present 
study

28.82 431.3 17.37 8.39 7.57 3.08 54.59 249.12 19144 7.93
Nador Lagoon (Morocco, 
Mediterranean coast)

554.9 71.6 - 135 150.8 1.6 - - - - [33] 

Coast of Cameroon 7.9–212 5.13–
328

1.59–
457

1.14–
21

1.0–64 0.01–
0.21

- - 3473.9–
136.762

- [34] 

Caspian Sea 88.07 102.02 43.27 11.9 39.33 0.55 117.84 - 4.32% 11.01 [35] 
Algerian coast 101.3 97.9 32.3 27.3 19.7 0.2 124.1 365.6 3.09 21.8 [17] 
Nasser Lake (Egypt) 26.9–

98.36
- - - 19.22–

41.82
0.13–
0.349

- 92.8–
619.7

6.17–
21.05

- [18] 

Persian Gulf Coastal (Iran) 1.35 1.11 0.89 0.73 2.03 0.04  -  - 1.86  - [19] 

Table 2: General characteristics of the sediments 

Sampling sites TOM (%) Carbonate 
(%)

Sand  
(%)

Clay+Silt 
(%)

TKZ 0.43 0.75 98.14 1.86
ADDA 0.46 0.88 97.5 2.5
ADJUE 0.36 0.78 98.51 1.49
JACQ 0.46 0.7 97.82 2.18
ADJ 0.34 0.6 92.09 7.91
BML 0.55 0.67 98.35 1.65
BMP 0.43 0.7 98.32 1.68
AZT 0.6 0.64 97.87 2.13
ACD 0.4 0.67 97.67 2.33
ACG 0.33 0.71 98.06 1.94
AL 1.17 1.36 96.94 3.06
AP 0.65 1.35 97.6 2.4
Average±SD 0.51±0.23 0.82±0.26 98.48±1.76 1.51±1.73
Heavy metal pollution assessment

Figure 2: Modified degree of contamination based on 
contamination factors of costal sediments from the Ivorian
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Ni were observed as the ΣTUs values exceeded than 4 comparatively 
to Zn, Pb, and Cu where the ΣTUs value was lower than 4, indicating 
low toxicity, Pedersen et al. [25]. In addition, the contamination may 
cause toxicity to other benthic organisms, in particular molluscs [15], 
crustaceans, and fishes, of which many species are widely consumed 
in Ivorian Coast and may. Therefore, it would present a serious risk for 
human health. These observations indicate that the protection of the 
coastal ecosystems in the Ivorian is still possible with the provision of 
stopping any type of industrial wastes at sea.

3.5. SQG Method
3.5.1. TEC and PEC approach
To evaluate the environmental quality of sediments, we compared 
the average concentrations of heavy metals to the American SQG of 
Macdonald et al. [27]. The TEC and the PEC established by Macdonald 
et al. [27] are used to assess the quality of marine and freshwater 
sediments. The TEC identifies contaminant concentrations below 
which sediment-dwelling organisms are not affected, while the PEC 
identifies contaminant concentrations above which adverse effects 
on sediment-dwelling organisms are observed. The concentrations of 
heavy metals in the sediment samples were compared to the TEC and 
PEC values of seven heavy metals (Zn, Cr, Ni, Pb, Cu, Cd, and As) 
and are recorded in Table 3. Compared to the results of the present 
study: As, Zn, Ni, Pb, and Cu are lower than the TEC 75%, 91.67%, 
and 100% in the samples, respectively. Therefore, these metals do not 
represent a hazard for most samples. Between the TEC and PEC, the 
concentrations of Zn, Ni, Pb, and As are 8.33% and 25% of the samples. 
Zn, Ni, and Pb are toxic to the coastal zone environment at the TKZ, 
JAC, and BML sites, respectively. As is toxic at the BMP, AZT, and 
AP sites. However, Cd is 100% toxic for all stations. Cr is very toxic 
for the 100% stations. These results indicate that the concentrations of 
Zn, Ni, Pb, As, Cd, and Cr at the level of the Ivorian coastal zone are 
likely to cause adverse effects on organisms living in the sediments. 
Furthermore, according to Rodrigue et al. [8], only Pb, Cd, and Zn are 
harmful to the environment of the Vridi Canal because of the intense 
industrial activities that take place there

3.5.2. Assessment of the biological toxicity of metals in sediments
To evaluate the biological toxicity of all the metals studied in the 
sediments, the m-PECq initiated by Macdonald et al. [27] was evaluated. 
The results of this assessment (Table 4) indicate that 75% of the sediment 
samples have m-PECq values>0.5 while 25% of the sediment samples 
have m-PECq values <0.5. Consequently, the littoral zone (TKZ Hozalem-
Assinie) would be 75% toxic to most species of aquatic organisms living 
in the sediments while the Vridi Canal zone would be 57.17% toxic to one 
or more species of aquatic organisms living in the sediments [8].

3.5.3. Potential ecological RI
Figure 4 presents the potential ecological RI in sediments from the 
Ivorian Coast. As a consequence of the calculated RI values for Mn, 

Table 4: Biological toxicity values for metals in sediment

m-PECq <0.5 m-PECq>0.5
Percentage (%) 25 75%

Table 3: Sediment quality at stations

Zn Cr Ni Pb Cu Cd As
TEC 121.00 43.30 22.70 35.80 31.60 0.99 9.79
PEC 459 111 48.6 128 149 4.98 33
Mean 28.82 431.3 17.37 8.39 7.57 3.08 7.93
Minimum 8.57 140.42 13.7 1.93 5.58 1.08 0.25
Maximum 185.25 883.42 24.53 46.43 17.33 3.88 18.37
% of samples <TEC 91.67 _ 91.67 91.67 100 _ 75
% of samples between 
TEC and PEC

8.33 _ 8.33 8.33 _ 100 25

% of samples>PEC _ 100 _ _ _ _ _

Figure 3: Contribution of respective heavy metals to the sum of 
the toxic units from the Ivorian

Figure 4: Potential ecological risk index based on contamination 
factors of surface sediments from the Ivorian Coast
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Zn, V, Pb, Cu, and Ni through the whole study area, these metals 
present a low potential ecological hazard. Of the 12 sampling sites, 11 
sites have RI values greater than 600, indicating very high ecological 
hazards (741.56 <RI <1269.80) for these stations. Only the AP station 
is subject to a considerable ecological risk with RI = 462.09. The 
potential ecological risks caused by metals ranked in a decreasing 
order of Cd>As>Cr>Ni>Cu>

Pb>V>Zn>Mn. The results showed that Cd (RI= 11079), As 
(RI  = 475.65), and Cr (RI = 295.65) had the highest single potential 
ecological risk indices in the sediment. These high values of RI are 
likely caused by anthropogenic inputs (such as offshore oil production, 
oil refinery, discharged ballast water from oil tanker and other ships, 
high maritime traffic, transit of oil carriers, port areas, industrial units, 
and discharge wastewater) [35].

4. CONCLUSION

The results of this study indicated that the mean heavy metal 
concentrations, in the sediments of Ivorian Coast zone, exhibited a 
decreasing order: Fe>Cr>Mn>V>Zn>Ni>Pb>As>Cu>Cd. From a 
qualitative point of view, the comparative analysis of metal contents to 
TEC, PEC, PEL, and m-PEC quality reference and potential ecological 
RI values indicates that most sites present very high ecological risks. 
Arsenic (As) is tox ic at the BMP, AZT and AP sites. However, Cd 
and Cr are 100% toxic for all stations. These results indicate that the 
concentrations of heavy metals are likely to cause adverse effects on 
organisms living in the sediments. ΣTU for all stations followed the 
descending order of Cr>Cd>Ni>As>Zn>Pb>Cu. The contribution of 
Cd and Cr to ΣTU was the highest (80%). The mCd values reflect a 
high degree of contaminations for all stations.
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