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ABSTRACT
The used simple equation of state formula contains three temperature dependent parameters viz.: Second virial 
coefficient, an effective hard convex bodies (HCB’S) diameter, and scaling factor for pair distribution function 
at contact. All the parameters can be calculated from the intermolecular potential of HCB’S, and hence the 
thermodynamic properties such as Joule-Thomson inversion curve, bulk modulus, and isobaric expansivity etc., 
are calculated. The agreement of these calculated data with experimental data is quite good.

Key words: Joule-Thomson inversion curve, Bulk modulus, Isobaric expansivity, Hard convex bodies, 
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1. INTRODUCTION
A central problem in the theory of fluids is the 
extension of their thermodynamic parameters in terms 
of intermolecular forces. One of the fundamental 
approaches to this problem is through the formulation 
of an accurate equation of state (EOS), since the 
thermodynamic functions can be easily derived 
once the EOS is known. Recent works by Song and 
Mason [1] on a statistical mechanical theory for the 
EOS of fluids have yielded simple but accurate results 
for molecular fluids. Three temperature dependent 
parameters arise in their formulation; second virial 
coefficient, an effective HCB’S diameter, and a 
scaling factor for pair distribution function at contact. 
All of the parameters can be calculated from the 
intermolecular potential. For a given intermolecular 
potential for hard convex bodies (HCB’s) [2-6] 
it is also possible to predict the thermodynamic 
properties of molecular fluids such as Joule-Thomson 
inversion curve, bulk modulus etc., The influence 
of attractive intermolecular forces can be treated 
by statistical mechanical perturbation theory, as 
can the softness of repulsions. Both isotropic and 
orientational correlations exhibit simpler behavior 
in the surface-to-surface than in the more customary 
center-to-center co-ordinate representation. All 
the intermolecular forces in the HCB model are 
transmitted perpendicularly to the surface, the natural 
co-ordinates are derived from the surface normal 

(or apse vector) and the shortest surface–to-surface 
separation [3-18]. Conventionally, center-to-center 
distances (plus orientations) have been employed to 
express intermolecular properties of atomic fluids. 
By means of support function, all the geometric 
properties of the HCB can be derived. In this work, 
this EOS is used to find selected thermodynamic 
properties of fluids, and the results are compared with 
experimental values. The advantage of this study is 
that one can equally predict the thermo-physical 
properties of these inert fluids and their mixtures by 
taking the ratio of semi major-axis and semi minor-
axis to a constant value i.e., by incorporating shape 
factor of the molecule into account. Agreement with 
experiment was excellent for these fluids.

2. MATHEMATICAL MODEL
The Lennard-Jones (L J) potential which has pair-
wise additive property can be used to approximately 
describe the intermolecular interactions.

φ =
( )









( )























−4E
h x
K

h x
K

p q

  (1)

Where K is an intermolecular distance, E is the energy 
for the intermolecular distance at which the potential 
disappears. p and q respectively is the exponent of the 
repulsive and the attractive terms. At higher densities, 
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the thermodynamic properties of liquid are chiefly 
governed by an intermolecular potential but mainly 
determined by its repulsive term.

The HCB [2-6] with semi major-axis m and semi 
minor- axis n, the support function is

h x n x( ) = +
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Where x K e= =^.̂ cosθ , ε = 
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Where K̂ is the surface normal or apse vector and ê  
is the orientation vector. The pair potential for HCB is 
characterized by three constant parameters m, n, 
and E. We have obtained the value of E from the 
available experimental data [19]. The potential well 
minimum occurs at K h x= 2

1

6 ( )
. We consider the 

statistical-mechanical EOS derived by Song and 
Mason [1], which is based on the Week-Chandler-
Anderson (WCA) perturbation theory for the 
condensed state. The derivation of the Song and 
Mason EOS begins with the equation relating the 
pressure to the pair distribution function, g(r).
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Where ρ  is the density, P is the pressure, kT  is the 

thermal energy per molecule, and ∂
∂
u
r

 is the derivative 

of the intermolecular potential function with respect to 
the distance r. On applying the perturbation scheme of 
the WCA method to the potential function and working 
out a correction for attractive forces, the EOS reads [20].
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Where the new corresponding-states principle has the 
form
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And Z
P
R T

=
ρ  is the compressibility factor. Here, 

G b( )ρ  is the average pair distribution at contact for 
equivalent HCB that still have pairwise additivity of 
the intermolecular forces. The many body nature of 
the system may be contained in G (b ρ). λ is the 
magnitude of the slope of G−1 versus b ρ a constant 

that must be determined empirically. λ is shown to 
incorporate quantum effects [21-23]. The product λb is 
analogous to the Van der Waals excluded volume. The 
second virial coefficient B2 in terms of center- to- center 
(r, θ, φ) [4].

Coordinate system may be written as
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u
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The virial coefficient described for center- to- center 
(r, θ, φ) coordinate system has been expressed in terms 
of surface-to-surface (K, θ, φ) coordinate system and 
angles measured with respect to normal K̂  or apse 
vector specifying minimum surface-to-surface distance. 
The full Jacobian for the transformation from center-to-
center to surface-to-surface coordinate system [5] is
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Where θ = π, φ = 2 π are respectively, the polar and 
azimuthal angles. The weight function S (x, K) for 
each value of the surface-to-surface distance K is 
Jacobian determinant. The parameters α and b are 
related to the intermolecular potential u0 

by α ( )T =N e S x K d d dK
u
kT

4
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0
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Where u0 is the repulsive part of u and surface-to-surface 
distance K is the position of the potential well minimum. 
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The value of B2 (T) can be calculated using equation (6) 
for any ratio of m and n and for a known value of E. The 
calculation of these temperature dependent parameters α 
(T) and b (T), are performed via their scaling rules and L 
J potential [24]. The reason is that b and α depend only 
on the intermolecular repulsive forces and are therefore 
relatively insensitive to the details of the shape of the 
intermolecular potential: They can be characterized by 
two constants corresponding to an average potential 
strength and range.

3.  COMPARISION WITH EXPERIMENTAL 
DATA
The EOS can be used as sensitive tests thermophysical 
properties. These include the Joule-Thomson inversion 
curve and bulk modulus and isobaric expansivity.

3.1.  Joule-Thomson Inversion Curve
The Joule-Thomson inversion curve is a sensitive test 
of the EOS [24]. The Joule-Thomson coefficient is 
related to the EOS by the thermodynamical formula

µJ T
P PC

T V
T

V= ×
∂
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1  (11)

Where CP is the specific heat capacity at constant 
pressure. The inversion curve is determined by the 
condition µJ T = 0; for the present EOS this yields
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If ρ is eliminated between equations (4) and (12), 
the inversion pressure may be obtained in terms 
of the inversion temperature. Analytical of ρ is not 
straightforward, but it is easy to proceed numerically. 
The curve calculated from equation (12), with 
smoothed values of B (T) from Ref. [22], is compared 
with experimental points for nitrogen [25]. The results 
are shown in Figure 1. From this figure, the maximum 
pressure is found to be 376 atmospheres falling at 
temperature 313.15 K. In the group of substances 
(air, O2, Ar, CH4, CO) whose critical temperature 
are above that of nitrogen the upper branch of the 
inversion curve falls largely or completely above our 
temperature range. In the group of substances (Ne, 
H2, He) whose critical temperature fall below that of 

nitrogen, the lower branch of inversion curve falls 
completely below our temperature range. Agreement 
with experimental data is quite good.

3.2. Bulk Modulus
The reduced bulk modulus is defined as

B
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Where ρB is Boyle’s density.

The linear temperature dependence of the reduced 
bulk modulus for each isochore has been investigated 
using an EOS based on statistical mechanics theory 
for Ar. The result is in good agreement with reliable 
experimental data [26]. The values of α (T) and 
b (T) for pure Ar are taken [20]. We have used the 
experimental values of the second virial coefficient for 
Ar [27]. The results are shown in Figure 2.

3.3.  Isobaric Expansivity

The expansivity α =
∂
∂
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from equation (4) and from the generalized equation 

Figure 1: The curve is calculated from the present 
equation of state, equation (11), and the points are 
experimental data for nitrogen [25].

Figure 2: The calculated and experimental values of 
the bulk modulus divided by R Bρ  of Ar at ρ = 28 (■), 
ρ= 30 (▲), and ρ = 33 (♦) mol.L−1. The line was 
calculated from equation (4) and the symbols are 
experimental values.
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of equation (4). The generalization of equation (4) to 
mixtures of any number of components takes the 
form [7].
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This equation is solved numerically to find the 
physical interpretation. We have performed such 
calculations over a wide range of temperatures and 
pressures. The results are shown in Figures 3 and 4. 
Figure 3 shows the isochores of 1/α versus P for Ar. 
A typical isochores is shown for Ar-Kr in Figure 4. 
This regularity provides a significant constraint on 
EOS the.

4. CONCLUSION
The Joule–Thomson inversion curve seems to be 
reasonable and insensitive to the model used for 

b and α. Furthermore, we may safely conclude that 
the parameters of the potential fit the experimental 
values of the second virial coefficient of HCB’S. The 
regularity holds for Ar and Kr as well as Kr-Xe and 
Ar-Kr mixtures while the isochores of 1/α versus 
P provides a constraint on EOS. Furthermore, the 
regularities have been extended to the fluid mixture. 
Our work does not indicate a great advantage of the 
K-based (surface-to-surface) over the r-based (center-
to-center) representation. This concludes that taking 
shape factor of the molecule into account that is by 
taking the different ratio of major and minor axis does 
not improve the quality of prediction. However, this 
work is good on mathematical modeling of physical 
chemistry, especially in the thermodynamic field. 
In addition, the methodology proposed in this paper 
provides a new tool of further calculation of other 
thermodynamic properties.
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