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1. INTRODUCTION

Transition metal complexes with hemilabile ligands have garnered 
significant interest due to their diverse structures, unusual reactivity, 
and catalytic applications. The bite angle of hemilabile ligands plays an 
important role in determining their reactivity. For example, the PPh2Py 
ligand has been widely used as a bridging ligand because of its rigidity, 
which is induced by a small bite angle in a chelated mode, thereby, favoring 
the formation of a metal–metal bond [1-3]. The coordination modes of 
this ligand have been reported, which include P-monodentate [4,5], 
P,N-chelate [5,6], P,N-bridging [7-9], and N-monodentate [10]. Several 
examples of pyridylphosphine coordinated homo- and hetero-binuclear 
complexes with transition metals have also been investigated [11-13]. 
On the other hand, the coordination chemistry of large bite-angle 
diphosphine ligands finds applications as catalysts in many organic 
transformation reactions [14]. DPEphos ligand, with a large bite angle, 
has been widely used due to its rich coordination behavior stemming 
from the presence of two phosphorus atoms and an oxygen atom 
as potential donor sites. Several coordination modes of this ligand 
have been reported such as P-monodentate [15], P,P-chelate [15-17], 
P,O,P-chelate [17,18], and P,P-bridging [17,19]. Literature suggests 
that this ligand can form coordination compounds with a variety of 
transition metals such as Cu(I) [15,20-22], Ni(0) [23], Ni(II) [22], 
Rh(I) [24,25], Ru(II) [17], Ag(I) [19,26], Pd(0) [27], Pd(II) [16], and 
Re(II) [28-30]. Some of these complexes serve as excellent catalysts for 
hydrogenation [17,28], hydroformylation [31], carbonylation [24,25], 
aryl halide amination [32,33], and cross-coupling [34] reactions.

To the best of our knowledge, coordination compounds of iron with 
phosphine ligands, such as diphenyl-2-pyridylphosphine (PPh2Py) 

and (bis-2-diphenylphosphinophenyl)ether (DPEphos), are rather 
limited [11,35]. This served as a motivation for the present study. 
We synthesized Fe(II) complexes with PPh2Py and DPEphos ligands 
and the complexes were characterized using elemental analysis, 
ESI-mass, Fourier transform infrared spectra (FTIR), Ultraviolet 
(UV)-visible, 1H and 31P{1H} nuclear magnetic resonance (NMR) 
spectroscopy. Further, first-principles density functional theory (DFT) 
calculations were performed on the cis- and trans-isomers, and the 
results were compared with experimentally synthesized complexes. 
DFT calculations in the gas phase offered a detailed understanding of 
the most stable geometrical isomers and insights into the structure and 
electronic properties of the Fe(II) complexes.

2. EXPERIMENTAL

2.1. Materials
The starting materials, diphenyl-2-pyridylphosphine (PPh2Py), and 
(bis-2-diphenylphosphinophenyl)ether (DPEphos) were purchased 
from M/S Aldrich, USA. FeCl2.4H2O was purchased from across 
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ABSTRACT
The synthesis and characterization of Iron(II) complexes [FeCl2(η2-P,N-PPh2Py)2] (1) and [FeCl2(η2-P,P-DPEphos)2] (2), with 
PPh2Py and DPEphos ligands, were performed using elemental analysis, ESI-mass, Fourier transform infrared spectra (FTIR), 
ultraviolet-visible, 1H and 31P{1H} nuclear magnetic resonance spectroscopy. FTIR measurements predicted cis-isomer to be 
the most stable form of complex 1 and trans-isomer to be the most stable form of complex 2. Quantum chemical calculations 
using first-principles density functional theory were performed on the two complexes at the B3LYP/LANL2DZ/6-31+G(d,p) 
level of theory. Theoretical calculations predicted that the ground state of the complexes would be a quintet spin state. However, 
in complex 1, the quintet spin state led to a significant elongation in Fe–P bond length to ~3.55 Å. Thus, a singlet (S = 1/2) 
spin state was considered for complex 1 which showed reasonable agreement with calculated geometric parameters. Trans-
configuration of complex 2 was shown to have a higher highest occupied molecular orbital-lowest unoccupied molecular orbital 
energy gap (higher stability) than complex 1 which was attributed to the nature of the ligand coordinated to Fe(II) ion.
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chemicals. All other chemicals and solvents were purchased from 
different Indian firms. The solvent was distilled and dried before use.

2.2. Synthesis of Complexes
2.2.1. Synthesis of [FeCl2(η2-P,N-PPh2Py)2] (1) complex
A solution of the ligand PPh2Py (250 mg; 0.95 mmol) in DMF (15 mL) 
was added to a solution of FeCl2.4H2O (100 mg; 0.50 mmol) in 10 mL 
DMF. The reaction mixture was stirred and refluxed under a continuous 
flow of N2 for an hour. The resulting solution was evaporated after 
cooling and washed several times with ether and DCM to obtain a 
reddish-colored complex (69% yield).

Analytical values for C34H28N2P2Cl2Fe (%): C, 62.48; H, 4.29; N, 4.29; 
Found: C, 61.99; H, 4.14; N, 3.97. ESI-mass, m/z (%): [M-2Cl-1]+, 
581 (100%); [M-2Cl-PPh2Py-1]+, 318 (3%); [M-2Cl-PPh2Py-Fe+1]+, 
264 (5%); [M-2PPh2-3]+, 280 (5%); [M-Cl-2PPh2+2]+, and 249 (5%). 
Selected IR frequencies (cm−1, KBr): 540 (υFeP), 318, 293 (υFeCl). UV-
Vis (CH3CN), λmax(nm): 300, 536. 1H NMR (δ ppm): 8.67 (br, 8H, Py), 
5.73–6.05 (br, 20H, Ph). 31P{1H} NMR (δ ppm): −7.57(s).

2.2.2. Synthesis of [FeCl2(η2-P,P-DPEphos)2] (2) complex
10 mL DMF solution of FeCl2.4H2O (100 mg; 0.50 mmol) was added 
to 15 mL DMF solution of the ligand DPEphos (550 mg; 1.02 mmol). 
The resulting mixture was refluxed under N2 for an hour. After cooling, 
the solution was evaporated, and the product was washed several times 
with ether and DCM to obtain a reddish-brown complex (38% yield).

Analytical values for C64H56O2P4Cl2Fe (%): C, 71.70; H, 4.65; Found: 
C, 71.26; H, 4.37. ESI-mass, m/z (%): [M-1]+, 1204 (12%); [M-2Cl-
Ph+2]+, 1059 (32%); [M-2Cl-Ph-PPh2]+, 872 (5%); [M-2Cl-3Ph-
PPh2-O-1]+, 702 (100%); [M-2Cl-3PPh2-O-PPh-P-2]+, 593 (45%). 
Selected IR frequencies (cm−1, KBr): 567 (υFeP), 318 (υFeCl). UV-Vis 
(CH3CN), λmax(nm): 315. 1H NMR (δ ppm): 5.13–5.29 (br, 56H, Ph). 
31P{1H} NMR (δ ppm): 30.05(s).

2.3. Physical Measurements
The IR spectra were recorded in the KBr disc and in CHCl3 using 
Shimadzu IR-prestige-21 (4000–250 cm−1). The UV-Vis spectra of 
the complexes were recorded using Shimadzu, graphicord UV-240, 
and Shimadzu UV 1700 spectrophotometers. The electrospray mass 
spectra of the complexes were recorded using Waters ZQ-4000 LC-
Mass spectrometer. The 1H and 31P NMR spectra of the complexes 
were recorded using TMS and 85% H3PO4 as a reference, respectively, 
by Bruker Avance 400 MHz spectrometer.

2.4. Theoretical Calculations
Since repeated attempts to obtain diffraction quality crystals of the two 
Fe(II) complexes failed at the level of the experiment, using an approach 
outlined in previous studies [11,35], we modeled the cis- and trans-isomers 
of the Fe(II) complexes by substituting the two bulky phenyl groups in 
PPh2 by hydrogen atoms [Scheme 1]. This made the calculations easier 

to handle and reduced both the time and cost of calculation. The initial 
geometries of Fe(II) complexes with hemilabile phosphine-based ligands, 
PPh2Py, and DPEphos were optimized in the gas phase without any 
symmetry constraints using the Gaussian 09 program [36]. Spin states, 
namely singlet (S = 1/2), triplet (3/2), and quintet (5/2), were considered 
to determine the ground state of Fe2+ complexes. The hybrid generalized 
gradient approximation exchange-correlation functional, B3LYP (Becke, 
3-parameter, Lee–Yang–Parr) was employed without any symmetry 
constraint along with the non-relativistic effective core potential 
LANL2DZ (Los Alamos effective-core potential) basis set [37] for Fe 
and Cl atoms and a 6–31+G (d,p) basis set for C, H, O, and P atoms. 
The geometry optimization was followed by frequency calculations to 
confirm the ground state of the optimized structures.

The reliability of B3LYP functional for studying a wide range of 
molecular properties including electronic structures of biomolecules 
interacting with metal nanoclusters has been reported [38,39] 
and showed consistent results for complexes with gold and other 
transition metals [40,41]. The electronic properties, frontier molecular 
orbitals, namely highest occupied molecular orbital (HOMO), 
lowest unoccupied molecular orbital (LUMO), HOMO-1, HOMO-
2, LUMO+1, LUMO+2, and HOMO-LUMO energy gap of the 
complexes were calculated. GaussView 6.0 was employed for all 
structural analysis. The minimum energy structures of the complexes 
were visualized using GaussView and the frontier molecular orbitals 
were visualized using Avogadro software, version 1.2.0 [42].

3. RESULTS AND DISCUSSION

3.1. Synthesis of Complexes
The synthesis route of the complexes is shown in Scheme 1. The 
reaction of FeCl2.4H2O with two molar equivalents of PPh2Py and 
DPEphos ligands in DMF solution yields hexa-coordinated [FeCl2(η2-
P,N-PPh2Py)2] (1) and [FeCl2(η2-P,P-DPEphos)2] (2) complexes where 
both ligands were coordinated in a bidentate fashion.

The ESI-mass spectrum of [FeCl2(η2-P,N-PPh2Py)2] (1) shows 
a base peak at m/z = 581 (100%) which corresponds to the 
[Fe(PPh2Py)2+1]+ fragment, that is, [M-2Cl-1]+ ion, formed by the 
removal of two Cl- ions from the complex. Low intense peaks are 
observed at m/z = 318, 280, 264, 249, respectively, which are due 
to [M-2Cl-PPh2Py-1]+, [M-2PPh2-3]+, [M-2Cl-PPh2Py-Fe+1]+, 
and [M-2PPh2-Cl+2]+ ions, respectively [Supporting Information, 
Figures S1 and 2]. The ESI-mass spectrum of [FeCl2(η2-P,P-
DPEphos)2] (2) shows a low intense [M-1]+ peak at m/z = 1204. 
The base peak at m/z = 702 is due to the [M-2Cl-3Ph-PPh2-O-1]+ 
fragment. Peaks with moderate intensities are observed at m/z = 1059 
and 593 due to the [M-2Cl-Ph+2]+ and [M-2Cl-3PPh2-O-PPh-2]+ ions, 
respectively. In addition, a peak at m/z = 872 is observed for [M-2Cl-
Ph-PPh2]+ fragment with a very low intensity [Supporting Information, 
Figures S3 and 4]. The fragmentation patterns of both complexes are 
consistent with similar types of mononuclear dichloride complexes. 

Scheme 1: General scheme for the synthesis of complexes 1 and 2.
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Figure 1: Fourier transform infrared spectra of (a) [FeCl2(η2-P,N-PPh2Py)2] (1) and (b) [FeCl2(η2-P,P-DPEphos)2] (2) complex.

a

b

The elemental analysis and ESI-mass spectra of the complexes are in 
clear agreement with the above formulation.

3.2. FTIR Studies
The IR spectrum of [FeCl2(η2-P,N-PPh2Py)2] (1) in KBr exhibits 
a characteristic M-P stretching band at 540 cm−1 consistent with 
coordination of the ligand through P–atoms [Figure 1a]. The spectrum 
shows a pyridine ring deformation frequency {νC=N} at 1614 cm−1 which 
shifts to higher frequency in comparison to the free PPh2Py ligand (1567 
cm−1) indicating the presence of N-coordinated pyridine rings [6,43]. The 
far IR shows two M–Cl stretching bands at 318 and 293 cm−1, respectively, 
which are characteristic of the cis-arrangement of chlorides [44].

In the IR spectrum of [FeCl2(η2-P,P-DPEphos)2] (2), a very low-
intensity M–P stretching band is observed at 567 cm−1 [Figure 1b]. 
An intense M–Cl stretching peak in the far IR spectrum at 318 cm−1 

is consistent with the chlorides in a trans-arrangement [44]. The 
non-coordination of the ethereal oxygen is further confirmed by the 
presence of the band at 1122 cm−1 [45].

3.3. UV-Vis Studies
UV–Vis spectrum of [FeCl2(η2-P,N-PPh2Py)2] (1) in methanol shows 
two intense bands at 300 and 536 nm [Figure 2a]. The band at 300 nm 

is attributed to intra-ligand n→π* transition which is slightly shifted 
to higher wavelength region compared to free ligand while the band 
at 536 nm is due to LMCT transition. The UV–Vis spectrum of 
[FeCl2(η2-P,P-DPEphos)2] (2) in DMSO shows a strong absorption 
band at 315 nm which can be assigned to intra-ligand n→π* transition 
[Figure 2b]. This band shifts about 46 nm in comparison to free ligand 
and is attributed to the coordination with Fe(II).

3.4. 1H and 31P{1H} NMR Studies
The 31P{1H} NMR spectrum of [FeCl2(η2-P,N-PPh2Py)2] (1) shows a 
strong singlet at δ–7.57 ppm indicating the presence of only one type 
of P-atoms in the complex [Figure 3a]. Compared to the 31P{1H} NMR 
spectrum of free ligand [46], complex 1 shows an upfield shift which 
is characteristic of a four-membered chelated ring [6]. A similar type 
of complex was reported by Ndifon et al. [43] where they established 
using IR spectroscopy that each PPh2Py ligand in the complex is η1-
coordinated through N-atom and not through P-atom. The 1H NMR 
spectrum shows a broad peak for the pyridyl protons centered at 
δ 8.67 ppm, shifting downfield compared to the free ligand which 
indicates the coordination through N-atom [Supporting Information, 
Figure S5]. Thus, both 31P{1H} and 1H NMR spectra support our 
proposed η2-P,N-structure of the complex.
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Figure 3: 31P{1H} Nuclear magnetic resonance spectra of (a) 
[FeCl2(η2-P,N-PPh2Py)2] (1) and (b) [FeCl2(η2-P,P-DPEphos)2] 
(2) complexes.

a

b

Figure 4: Minimum energy geometries of Fe(II) complexes 1 
and 2 with hemilabile ligands. (a) Complex 1 in cis-configuration 
and (b) complex 2 in trans-configuration. Frequency calculations 
confirmed the ground state of the optimized structures in the gas 
phase.

a b

Figure 2: Ultraviolet-Vis spectrum of (a) [FeCl2(η2-P,N-PPh2Py)2] (1) and (b) [FeCl2(η2-P,P-DPEphos)2] (2) complexes.
a b

The 31P{1H} NMR spectrum of [FeCl2(η2-P,P-DPEphos)2] (2) shows a 
singlet at about δ 30 ppm, shifting downfield compared to free ligand 
(δ–16.5 ppm) [47] confirming the coordination of P–atoms with the 
metal [Figure 3b]. The 1H NMR spectrum shows a slightly broad 
peak for aromatic protons in the region δ 5.29–5.13 ppm [Supporting 
Information, Figure S6].

3.5. Structural Properties of the Complexes
In our theoretical calculations, we optimized the geometries of the two 
complexes in both cis- and trans-configurations. The cis-isomer of 

complex 1 and trans-isomer of complex 2 are predicted to the minimum 
energy (stable) geometries as shown in Figure 4. Geometry optimization 
of complexes 1 and 2 in the gas phase at the three spin states (S = 1/2, 3/2, 
and 5/2) confirms the high-spin quintet (S = 5/2) state to the minimum 
energy configuration. Structural parameters of the complexes such as 
bond length, bond angle, dipole moment, and HOMO-LUMO energy 
gap are provided in Table 1. We calculated that the relative stability of 
the complexes in terms of the total energy and quintet state is shown 
to be the ground state geometry for both complexes in their respective 
isomeric forms [Supporting Information, Table S2]. However, the energy 
difference between cis- and trans-isomers is found to be minimal. For 
complex 1, although quintet spin state is shown to have favorable energy, 
it led to a significant elongation in Fe–P bond length to ~3.55 Å which is 
beyond the reported Fe–P bond length. Due to this reason, we considered 
a singlet (S = 1/2) spin state which shows reasonable agreement in the 
calculated geometric parameters. The total energies and relative stability 
of the isomers of complexes 1 and 2 in spin states 1/2, 3/2, and 5/2 are 
provided in Supporting Information, Table S2.

In complexes 1 and 2, the average Fe–P bond length is calculated to 
be ~2.39 Å and ~2.69 Å, respectively. The calculated bond lengths 
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Figure 5: Frontier molecular orbitals corresponding to highest occupied molecular orbital (HOMO)-2, HOMO-1, HOMO, lowest 
unoccupied molecular orbital (LUMO), LUMO+1, and LUMO+2 of complexes 1 and 2 in the gas phase.

Table 1: Geometrical parameters of the cis-isomer of complex 1 and trans-isomer of complex 2 calculated at the  
B3LYP/LANL2DZ/6-31+G(d,p) level of theory in the gas phase.

Complex Bond length (Å) Bond angle (°) Dipole moment (D) Energy gap (eV)
Complex 1 Fe–Cl1 2.38 Cl1-Fe-Cl2 128.92 8.97 3.79

Fe–Cl2 2.38 Cl1-Fe-P1 80.20
Fe–P1 2.39 Cl2-Fe-P2 80.25
Fe–P2 2.39 N1-Fe-Cl1 102.80
Fe–N1 2.01 N2-Fe-Cl2 102.78
Fe–N2 2.01 P1-Fe-P2 75.47

Complex 2 Fe–Cl1 2.42 Cl1-Fe-Cl2 180.0 0.07 4.80
Fe–Cl2 2.37 Cl1-Fe-P1 92.66
Fe–P1 2.68 Cl2-Fe-P2 86.37
Fe–P2 2.70 Cl1-Fe-P3 93.63
Fe–P3 2.70 Cl2-Fe-P4 87.34
Fe–P4 2.68 P1-Fe-P2 

P3-Fe-P4
89.45

are longer when compared to the previously reported value of ~2.3 
Å [35]. An elongation in Fe–P bond is observed in complex 2 which 

may be attributed to the quintet spin state of the complex. The Fe–P 
bond in complex 1, cis-isomer, is shorter than in complex 2, trans-
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isomer. In a previous study by Kneebone et al. [48], Fe–P bond length 
in FeCl2(bisphosphine) complexes was reported between 2.41 and 2.45 
Å depending on the bisphosphine ligand coordinated to iron ion.

The average Fe–Cl bond length is calculated to be 2.38 Å for complex 1 
and ~2.39 Å for complex 2, which is in good agreement with previously 
reported value [35]. However, the calculated values are slightly 
longer than the reported [FeCl3{PPh2(p-C6H4NMe2)-P}3] complex 1 
and other known Fe-complex and these changes in the geometrical 
parameters may be attributed to electron delocalization [11,48,49]. The 
Fe–N bond length of 2.01Å in complex 1 is comparable to other known 
pyridyl complexes of Fe(III) [49]. Elongation in the calculated bond 
lengths, as shown in Table 1, is associated with the nature of the ligand 
coordinated to Fe(II) ion, the spin state of the complexes, electronic 
configuration, level of DFT calculation, and absence of intramolecular 
interactions, for example, van der Waals forces and hydrogen bond 
interactions in the gas phase DFT calculations [50,51].

3.6. Electronic Properties of the Complexes
The HOMO-LUMO energy gap is an important molecular descriptor 
in comparing the stability of transition metal complexes. A comparison 
of the HOMO-LUMO energy gap suggests complex 2 to have a higher 
energy gap of ~4.80 eV compared to complex 1 in the gas phase 
[Table 1], which can be attributed to the nature of ligand coordinated 
to Fe(II) ion. The smaller HOMO-LUMO energy gap in complex 1 
clarifies the charge transfer interactions within the complex. In terms 
of dipole moment, we find that a deviation from a perfectly octahedral 
geometry leads to an increase in the overall dipole moment of the 
complex, as shown in Figure 4. The significantly higher dipole moment 
in complex 1 compared to complex 2 points to the former being more 
polarizable than complex 2.

Frontier molecular orbitals suggest that in complex 1, HOMO is mainly 
localized on atoms of chlorine and Fe while LUMO is delocalized on 
the ligand except for chlorine atoms [Figure 5]. In complex 2, both 
HOMO and LUMO orbitals are localized on atoms of chlorine and Fe 
along with some contributions from the ligand. The frontier molecular 
orbitals for HOMO-1, HOMO-2, LUMO+1, and LUMO+2 are shown 
in Figure 5. In complex 1, like HOMO orbitals, HOMO-1, and HOMO-
2 are localized on the chlorine and Fe atoms. Thus, they act as electron 
donor sites in the complex. In complex 2, both HOMO-1 and HOMO-
2 are predominantly localized on chlorine atoms and delocalized on 
the aromatic ring which suggests these sites to contribute as electron 
donors in the complex. The LUMO+1 and LUMO+2 orbitals in 
complexes 1 and 2 are predominantly delocalized on the ligand with 
some contributions on Fe and chlorine atoms.

4. CONCLUSION

Two Fe(II) complexes with PPh2Py and DPEphos ligands were 
synthesized and characterized using elemental analysis, ESI-mass, 
FTIR, UV-Vis, 1H, and 31P{1H} NMR spectroscopy. Molecular 
geometries of the synthesized complexes were optimized in the gas 
phase using DFT calculations to get better insights into their structural 
and electronic properties. DFT calculations support the experimental 
findings by establishing the cis- and trans-isomers of complexes 1 and 
2, to be the most stable form of the complexes. Further, the spin state of 
the Fe(II) center is crucial in determining the stable geometry, isomeric 
forms, and interaction through the ancillary ligand. As literature reports 
on synthesized complexes with Fe(II) are rather limited, the present 
study extends the scope of Fe(II) complexes with a large bite angle 
diphosphine ligand and a small bite angle PPh2Py ligand and highlights 
the importance and potential relevance of phosphine-based ligands in 
iron chemistry.
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