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1. INTRODUCTION

The increasing accumulation of heavy metals (HMs) in soil and their 
subsequent entry into the food and water supply chains is major 
environmental concerns [1-5]. HMs such as Hg(II), Cr(V), and Cd(II) 
are non-biodegradable and highly toxic, making their remediation 
critical [6-10]. Soil acts as a vital sink for these contaminants, impacting 
organisms from microbes to humans. Traditional remediation 
techniques include thermal treatment, filtration, adsorption, chemical 
abstraction, and microbial degradation [11-14]. However, these 
methods often suffer from drawbacks such as high costs, inefficiency, 
and secondary pollution [15-20].

Nanotechnology has emerged as a novel approach to address these 
challenges, offering enhanced remediation capabilities due to the 
unique properties of nanoparticles (NPs) [21-24]. NPs, with their 
high surface area-to-volume ratio and reactive surfaces, provide new 
dimensions for the remediation of polluted soils [25-32]. This paper 
discusses the mechanisms by which plants and NPs can remediate 
HM-contaminated soils, their applications, and potential risks

2. TYPES OF SOIL CONTAMINANTS

2.1. HMs
Lead (Pb), cadmium (Cd), mercury (Hg), and arsenic (As) are common 
HMs that contaminate soil [33,34].

2.2. Organic Pollutants
Pesticides, polycyclic aromatic hydrocarbons (PAHs), and petroleum 
hydrocarbons are significant organic contaminants [34,35].

2.3. Other Hazardous Substances
Persistent organic pollutants and emerging contaminants such as 
pharmaceuticals and personal care products [36-38].

3. NPS IN SOIL REMEDIATION

NPs, due to their high surface area-to-volume ratio and reactivity, 
are ideal candidates for soil remediation. They interact with 

contaminants at the molecular level, offering various mechanisms for 
remediation [39-41].

3.1. Types of NPs Used in Soil Remediation
3.1.1. Nano Zero-valent iron NPs (nZVI)
Extensively used for reducing and immobilizing HMs and 
degrading organic pollutants due to their high reactivity and cost-
effectiveness (Table 1) [42].

3.1.2. Carbon-based NPs
Carbon nanotubes (CNTs) and graphene oxide are effective adsorbents 
for a wide range of contaminants due to their large surface area and 
functional groups [43].

3.1.3. Metal oxide NPs
Titanium dioxide (TiO2), iron oxide (Fe3O4), and zinc oxide (ZnO) 
NPs are used for their catalytic and adsorptive properties [44].

3.1.4. Bimetallic NPs
Combining two metals, such as iron and palladium, enhances reactivity 
and selectivity for specific contaminants. Bimetallic NPs are effective 
in degrading chlorinated organic compounds and HMs [45-48].

4. EFFECTIVENESS OF NP-BASED SOIL REMEDIATION

The effectiveness of NP-based soil remediation depends on several 
factors, including the type of NPs, soil characteristics, contaminant 
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properties [49,50], and environmental conditions [51-53]. Studies 
show high removal efficiencies for various contaminants [54-56]. For 
instance, nZVI has achieved over 90% removal of HMs such as lead 
and chromium, whereas TiO2 NPs have degraded over 80% of organic 
pollutants under optimal conditions [57-61].

4.1. Mechanisms of NP-Based Remediation

4.1.1. Physicochemical processes
NPs facilitate the removal of contaminants through various 
physicochemical processes, including adsorption, precipitation, 
catalysis, and redox reactions [62]. These processes alter the chemical 
state and mobility of HMs, making them less toxic and more 
stable (Figure 1) [63-68] .

Table 2: Nanomaterials and uses in soil remediation.

Nanomaterial type Function Reference
Nano zero-valent iron (nZVI) Reduction of heavy metals (e.g., Cr (VI) to Cr (III)); immobilization of contaminants [120]
Carbon nanotubes (CNTs) Adsorption of organic and inorganic pollutants
Titanium dioxide (TiO₂) Photocatalytic degradation of organic pollutants
Zinc oxide (ZnO) Removal of heavy metals through adsorption
Iron (III) oxide (Fe₃O₄) Removal of heavy metals; magnetic separation
Mesoporous silica nanoparticles Immobilization of contaminants; enhanced adsorption due to high surface area
Nickel and magnesium oxide (NiO, MgO) Adsorption of metal ions (e.g., Zn2+, Cu2+, and Cr3+)
Cobalt and cobalt oxide Photocatalytic degradation under sunlight
Electrospun nanofibrous webs Biological degradation of pollutants
Nanobiosorbents and nanobiosurfactants Enhanced bioremediation processes by increasing the bioavailability of pollutants
Nanophytoremediation Utilization of nanomaterials to enhance plant uptake and detoxification of pollutants

Table 1: Different plants used for the removal of different heavy metals.

Plant name Type of 
phytoremediation

Metal Mechanism References

Silene vulgaris Phytostabilization Fe, Ni, Cu, Al, 
Sn, and Zn

Binding with a protein with oxalate oxidase activity in the 
cell wall; accumulation in the cell wall as silicates

[100]

Sedum alfredii H Phytostabilization Pb and Cd Induction of glutathione biosynthesis that binds metals in roots [101-104]
Imperata cylindrica, 
Miscanthus 
floridulus

Phytostabilization Cd, Zn, Cu, and 
Pb

Fibrous root system retaining the metals [105]

Lupinus albus Phytostabilization As and Cd Metal accumulation in root nodules; increasing the pH in 
the rhizosphere by citrate release

[106]

Athyrium wardii Phytostabilization Cd and Pb Root retention of metals [107,108]
Salicornia bigelovii Phytovolatilization Se Volatilization as dimethyl selenide [109]
Sedum alfredii Phytoextraction Pb and Cd Induction and accumulation of phytochelatin that binds 

metals in above-ground parts
[104]

Ceratophyllum 
demersum

Phytoextraction Cd Production of phytochelatin for metal binding in shoots; 
activation of cysteine synthase, glutathione-S-transferase, 
and glutathione

[110]

Brassica juncea Phytoextraction Cd Synthesis of phytochelatins (PCs), glutathione reductase, 
non-protein thiols, and glutathione for metal binding in shoots

[111]

Thlaspi 
caerulescens, 
Thlaspi ochroleucum

Phytoextraction Zn, Cd, Cr, Cu, 
Ni, and Pb

Lowering the pH of the rhizosphere; thus enhancing metal 
solubilization

[112]

Cynodon dactylon Phytostabilization As, Zn, and Pb Binding with hyphae of mycorrhizae; Release of organic acids [113]
Pteris vittata Phytoextraction As Increased colonization; exploring more soil [113]
Thlaspi goesingense Phytoextraction Ni Lowering the soil pH; release of ligands into the 

rhizosphere
[114,115]

Sedum alfredii Phytoextraction Zn Metals loaded into leaf sections and protoplast [116]
Arabidopsis halleri Phytoextraction Cd and Zn Accumulation in trichomes and mesophyll cells [117]
Alyssum species, 
Brassica juncea

Phytoextraction Ni Binding of the metals with histidine for detoxification [118,119]
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4.1.1.1. Adsorption
NPs, particularly those with high specific surface areas such as carbon-
based nanomaterials and metal oxides, adsorb HMs from the soil 
matrix through surface interactions (Figure 2) [69-72].

4.1.1.2. Precipitation
NPs induce the precipitation of HMs as stable compounds, reducing 
their mobility and bioavailability [73-75].

4.1.1.3. Catalysis
NPs serve as catalysts for redox reactions, transforming toxic HMs into 
less harmful forms. For example, nZVI reduces Cr(VI) to Cr(III), a less 
toxic form [76-78].

4.1.1.4. Ion exchange
Certain NPs can exchange ions with HMs in the soil, effectively 
immobilizing them [79-81].

4.1.2. Biological processes
NPs also enhance bioremediation processes by interacting with 
soil microbes and plants, promoting the breakdown and uptake of 
contaminants.

4.1.2.1 Bio stimulation
NPs stimulate microbial activity by providing essential nutrients or 
enhancing the bioavailability of contaminants, facilitating microbial 
degradation [82].

4.1.2.2. Bioaccumulation
Plants and microbes can uptake NPs along with adsorbed HMs, 
reducing the concentration of contaminants in the soil [83].

4.1.2.3. Phytoremediation
NPs enhance plant uptake of HMs through root absorption and 
translocation. Plants such as hyperaccumulators benefit from the 
increased availability of HMs due to NP-mediated mobilization (Table 
2) [84].

5. APPLICATIONS OF NPS IN SOIL REMEDIATION

5.1. nZVI
nZVI is widely used for its strong reduction capabilities and large 
surface area. It effectively transforms toxic HMs into less harmful 
forms. Studies have shown that nZVI, combined with biochar or 
stabilizers such as carboxymethyl cellulose (CMC), significantly 

Figure 1: Soil remediation mechanisms using plants and nanoparticles.

Figure 2: Different layers of soil and removal of contaminants.
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enhances the removal efficiency of contaminants such as chromium, 
cadmium, and lead (Figure 3) [85-89].

5.2. Carbon-Based Nanomaterials
CNTs, graphene oxide, and biochar-derived NPs are effective 
adsorbents for HMs. They offer high surface area and functional 
groups that facilitate the binding of contaminants, making them stable 
and less bioavailable [90].

5.3. Metal Oxide NPs
Metal oxides such as titanium dioxide (TiO₂), ZnO, and iron oxides 
are used for their photocatalytic and adsorption properties. They 
degrade organic pollutants and adsorb HMs, reducing soil toxicity 
(Table 3) [91].

6. CASE STUDIES AND PRACTICAL APPLICATIONS

6.1. Reduction of HMs
6.1.1. nZVI for chromium reduction
Zero-valent iron NPs have been effective in reducing Cr(VI) to Cr(III). 
Studies report up to 98% removal of Cr(VI) in soil within 24 h at a pH 
level of 5 [92].

6.1.2. Biochar and nZVI
Combining nZVI with biochar enhances the reduction 
capacity and removal efficiency, with 66% of Cr(VI) removed 
from the soil [93].

6.2. Degradation of Organic Pollutants
6.2.1. TiO2 for organic pollutant degradation
Titanium dioxide NPs degrade organic contaminants such as 
pesticides and PAHs under UV light, achieving over 80% degradation 
efficiency [94].

6.2.2. Stabilized nZVI for DDT removal
nZVI stabilized with CMC has shown effective removal of organic 
contaminants like DDT, with 25% removal from the soil within 
72 h [95].

6.3. Advantages and Challenges [96]
6.3.1 Advantages
6.3.1.1. High efficiency
NPs offer high removal efficiencies for a wide range of contaminants.

6.3.1.2. Cost-effectiveness
NP-based methods can be more cost-effective than traditional 
remediation techniques.

6.3.1.3. Environmental friendliness
These methods are environmentally friendly, causing minimal 
disruption to soil structure and fertility.

6.3.2. Challenges [97]
6.3.2.1. Potential toxicity
The environmental and health impacts of NPs themselves need careful 
assessment to avoid secondary contamination.

Table 3: Different heavy metals and its source in soil 
contamination.

S. No. Heavy metals Sources
1 Cr (VI) Ferroalloys, mining, the leather industry, and 

metallurgy, etc.
2 Pb² Pesticides, fertilizers, batteries, metal plating, 

and ore smelting
3 As Coals, ceramics, metallurgy, animal 

supplements, electrical production, 
geochemistry, and pesticides

4 Cd² Coal burning, pigments, and metal coating 
batteries

5 Hg Industries of metallurgy, catalyst, mercury 
lamps, paper and pulp, pharmaceuticals, and 
agriculture

6 Ni² Glass batteries, ceramics, and catalyst
7 Cu² Water pipelines, metals, and the chemical and 

pharmaceutical sectors
8 Zn² Rubber, paint, PVC stabilizers, zinc alloys, 

and stabilizers

Figure 3: Flow diagram showing types of nano material its applications and mechanism in soil remediation.
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6.3.2.2. Scalability
Large-scale application of NPs for soil remediation requires further 
research and development.

6.3.2.3. Stability
Ensuring the stability and longevity of NPs in soil environments is 
crucial for sustained remediation.

7. POTENTIAL RISKS AND ENVIRONMENTAL IMPACT

While NPs offer significant advantages for soil remediation, their 
environmental impact and potential risks cannot be overlooked. The 
unnecessary build-up of NPs in the environment can lead to toxicity in 
plants and other organisms. Understanding the post-treatment behavior 
of NPs and their movement in ecosystems is crucial. Strategies for the 
safe design, application, and disposal of NPs must be developed to 
mitigate these risks [98,99].

8. CONCLUSION

NPs provide innovative solutions for the remediation of HM-
contaminated soils through various physicochemical and biological 
mechanisms. Their unique properties make them highly effective in 
reducing the toxicity and mobility of contaminants. However, careful 
consideration of their environmental impact and potential risks is 
essential for sustainable application. Further research is needed to 
optimize NP-based remediation techniques and ensure environmental 
safety.
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