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ABSTRACT

Soil contamination due to heavy metals (HMs) poses a significant environmental and public health challenge. Traditional
remediation methods have limitations such as inefficiency, high costs, and secondary pollution. Recentadvances in nanotechnology
offer promising alternatives through the application of nanoparticles (NPs) for soil remediation. This paper explores the
mechanisms and effectiveness of NPs in the remediation of HM-contaminated soils, focusing on various physicochemical and

biological processes, and highlights their advantages and potential risks.
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1. INTRODUCTION

The increasing accumulation of heavy metals (HMs) in soil and their
subsequent entry into the food and water supply chains is major
environmental concerns [1-5]. HMs such as Hg(II), Cr(V), and Cd(II)
are non-biodegradable and highly toxic, making their remediation
critical [6-10]. Soil acts as a vital sink for these contaminants, impacting
organisms from microbes to humans. Traditional remediation
techniques include thermal treatment, filtration, adsorption, chemical
abstraction, and microbial degradation [11-14]. However, these
methods often suffer from drawbacks such as high costs, inefficiency,
and secondary pollution [15-20].

Nanotechnology has emerged as a novel approach to address these
challenges, offering enhanced remediation capabilities due to the
unique properties of nanoparticles (NPs) [21-24]. NPs, with their
high surface area-to-volume ratio and reactive surfaces, provide new
dimensions for the remediation of polluted soils [25-32]. This paper
discusses the mechanisms by which plants and NPs can remediate
HM-contaminated soils, their applications, and potential risks

2. TYPES OF SOIL CONTAMINANTS
2.1. HMs

Lead (Pb), cadmium (Cd), mercury (Hg), and arsenic (As) are common
HMs that contaminate soil [33,34].

2.2. Organic Pollutants

Pesticides, polycyclic aromatic hydrocarbons (PAHs), and petroleum
hydrocarbons are significant organic contaminants [34,35].

2.3. Other Hazardous Substances

Persistent organic pollutants and emerging contaminants such as
pharmaceuticals and personal care products [36-38].

3. NPS IN SOIL REMEDIATION

NPs, due to their high surface area-to-volume ratio and reactivity,
are ideal candidates for soil remediation. They interact with
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contaminants at the molecular level, offering various mechanisms for
remediation [39-41].

3.1. Types of NPs Used in Soil Remediation

3.1.1. Nano Zero-valent iron NPs (nZVI)

Extensively used for reducing and immobilizing HMs and
degrading organic pollutants due to their high reactivity and cost-
effectiveness (Table 1) [42].

3.1.2. Carbon-based NPs

Carbon nanotubes (CNTs) and graphene oxide are effective adsorbents
for a wide range of contaminants due to their large surface area and
functional groups [43].

3.1.3. Metal oxide NPs

Titanium dioxide (TiO,), iron oxide (Fe;0,), and zinc oxide (ZnO)
NPs are used for their catalytic and adsorptive properties [44].

3.1.4. Bimetallic NPs

Combining two metals, such as iron and palladium, enhances reactivity
and selectivity for specific contaminants. Bimetallic NPs are effective
in degrading chlorinated organic compounds and HMs [45-48].

4. EFFECTIVENESS OF NP-BASED SOIL REMEDIATION

The effectiveness of NP-based soil remediation depends on several
factors, including the type of NPs, soil characteristics, contaminant
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properties [49,50], and environmental conditions [51-53]. Studies 4.1.1. Physicochemical processes

NPs facilitate the removal of contaminants through various
physicochemical processes, including adsorption, precipitation,
catalysis, and redox reactions [62]. These processes alter the chemical
state and mobility of HMs, making them less toxic and more

stable (Figure 1) [63-68] .

show high removal efficiencies for various contaminants [54-56]. For
instance, nZVI has achieved over 90% removal of HMs such as lead
and chromium, whereas TiO, NPs have degraded over 80% of organic
pollutants under optimal conditions [57-61].

4.1. Mechanisms of NP-Based Remediation

Table 1: Different plants used for the removal of different heavy metals.

Plant name Type of Metal Mechanism References
phytoremediation
Silene vulgaris Phytostabilization Fe, Ni, Cu, Al, Binding with a protein with oxalate oxidase activity in the [100]
Sn, and Zn cell wall; accumulation in the cell wall as silicates

Sedum alfredii H Phytostabilization Pb and Cd Induction of glutathione biosynthesis that binds metals inroots ~ [101-104]

Imperata cylindrica,  Phytostabilization Cd, Zn, Cu, and Fibrous root system retaining the metals [105]

Miscanthus Pb

foridulus

Lupinus albus Phytostabilization As and Cd Metal accumulation in root nodules; increasing the pH in [106]
the rhizosphere by citrate release

Athyrium wardii Phytostabilization Cd and Pb Root retention of metals [107,108]

Salicornia bigelovii ~ Phytovolatilization Se Volatilization as dimethyl selenide [109]

Sedum alfredii Phytoextraction Pb and Cd Induction and accumulation of phytochelatin that binds [104]
metals in above-ground parts

Ceratophyllum Phytoextraction Cd Production of phytochelatin for metal binding in shoots; [110]

demersum activation of cysteine synthase, glutathione-S-transferase,
and glutathione

Brassica juncea Phytoextraction Cd Synthesis of phytochelatins (PCs), glutathione reductase, [111]
non-protein thiols, and glutathione for metal binding in shoots

Thlaspi Phytoextraction Zn, Cd, Cr, Cu, Lowering the pH of the rhizosphere; thus enhancing metal [112]

caerulescens, Ni, and Pb solubilization

Thlaspi ochroleucum

Cynodon dactylon Phytostabilization As, Zn, and Pb Binding with hyphae of mycorrhizae; Release of organic acids [113]

Pteris vittata Phytoextraction As Increased colonization; exploring more soil [113]

Thlaspi goesingense ~ Phytoextraction Ni Lowering the soil pH; release of ligands into the [114,115]
rhizosphere

Sedum alfredii Phytoextraction Zn Metals loaded into leaf sections and protoplast [116]

Arabidopsis halleri Phytoextraction Cd and Zn Accumulation in trichomes and mesophyll cells [117]

Alyssum species, Phytoextraction Ni Binding of the metals with histidine for detoxification [118,119]

Brassica juncea

Table 2: Nanomaterials and uses in soil remediation.

Nanomaterial type Function Reference

Nano zero-valent iron (nZVI) Reduction of heavy metals (e.g., Cr (VI) to Cr (III)); immobilization of contaminants [120]

Carbon nanotubes (CNTs)

Titanium dioxide (TiO2)

Zinc oxide (ZnO)

Iron (III) oxide (FesOa)

Mesoporous silica nanoparticles
Nickel and magnesium oxide (NiO, MgO)

Cobalt and cobalt oxide

Electrospun nanofibrous webs

Nanobiosorbents and nanobiosurfactants

Nanophytoremediation

Adsorption of organic and inorganic pollutants

Photocatalytic degradation of organic pollutants

Removal of heavy metals through adsorption

Removal of heavy metals; magnetic separation

Immobilization of contaminants; enhanced adsorption due to high surface area

Adsorption of metal ions (e.g., Zn*', Cu®’, and Cr3+)

Photocatalytic degradation under sunlight

Biological degradation of pollutants

Enhanced bioremediation processes by increasing the bioavailability of pollutants

Utilization of nanomaterials to enhance plant uptake and detoxification of pollutants
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Figure 2: Different layers of soil and removal of contaminants.

4.1.1.1. Adsorption

NPs, particularly those with high specific surface areas such as carbon-
based nanomaterials and metal oxides, adsorb HMs from the soil
matrix through surface interactions (Figure 2) [69-72].

4.1.1.2. Precipitation
NPs induce the precipitation of HMs as stable compounds, reducing
their mobility and bioavailability [73-75].

4.1.1.3. Catalysis
NPs serve as catalysts for redox reactions, transforming toxic HMs into
less harmful forms. For example, nZVI reduces Cr(VI) to Cr(IlI), a less
toxic form [76-78].

4.1.1.4. Ton exchange
Certain NPs can exchange ions with HMs in the soil, effectively
immobilizing them [79-81].

4.1.2. Biological processes

NPs also enhance bioremediation processes by interacting with
soil microbes and plants, promoting the breakdown and uptake of
contaminants.
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4.1.2.1 Bio stimulation

NPs stimulate microbial activity by providing essential nutrients or
enhancing the bioavailability of contaminants, facilitating microbial
degradation [82].

4.1.2.2. Bioaccumulation
Plants and microbes can uptake NPs along with adsorbed HMs,
reducing the concentration of contaminants in the soil [83].

4.1.2.3. Phytoremediation

NPs enhance plant uptake of HMs through root absorption and
translocation. Plants such as hyperaccumulators benefit from the
increased availability of HMs due to NP-mediated mobilization (Table
2) [84].

5. APPLICATIONS OF NPS IN SOIL REMEDIATION

5.1. nZvI

nZVI is widely used for its strong reduction capabilities and large
surface area. It effectively transforms toxic HMs into less harmful
forms. Studies have shown that nZVI, combined with biochar or
stabilizers such as carboxymethyl cellulose (CMC), significantly
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Figure 3: Flow diagram showing types of nano material its applications and mechanism in soil remediation.

Table 3: Different heavy metals and its source in soil
contamination.

S. No. Heavy metals Sources

1 Cr (VD) Ferroalloys, mining, the leather industry, and
metallurgy, etc.

2 Pb? Pesticides, fertilizers, batteries, metal plating,
and ore smelting

3 As Coals, ceramics, metallurgy, animal
supplements, electrical production,
geochemistry, and pesticides

4 Cd? Coal burning, pigments, and metal coating
batteries

5 Hg Industries of metallurgy, catalyst, mercury
lamps, paper and pulp, pharmaceuticals, and
agriculture

6 Ni? Glass batteries, ceramics, and catalyst

Cu? Water pipelines, metals, and the chemical and

pharmaceutical sectors

8 Zn? Rubber, paint, PVC stabilizers, zinc alloys,

and stabilizers

enhances the removal efficiency of contaminants such as chromium,
cadmium, and lead (Figure 3) [85-89].

5.2. Carbon-Based Nanomaterials

CNTs, graphene oxide, and biochar-derived NPs are effective
adsorbents for HMs. They offer high surface area and functional
groups that facilitate the binding of contaminants, making them stable
and less bioavailable [90].

5.3. Metal Oxide NPs

Metal oxides such as titanium dioxide (TiO2), ZnO, and iron oxides
are used for their photocatalytic and adsorption properties. They
degrade organic pollutants and adsorb HMs, reducing soil toxicity
(Table 3) [91].
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6. CASE STUDIES AND PRACTICAL APPLICATIONS

6.1. Reduction of HMs

6.1.1. nZVI for chromium reduction

Zero-valent iron NPs have been effective in reducing Cr(VI) to Cr(III).
Studies report up to 98% removal of Cr(VI) in soil within 24 h at a pH
level of 5 [92].

6.1.2. Biochar and nZVI

Combining nZVI with biochar enhances the reduction
capacity and removal efficiency, with 66% of Cr(VI) removed
from the soil [93].

6.2. Degradation of Organic Pollutants

6.2.1. TiO, for organic pollutant degradation

Titanium dioxide NPs degrade organic contaminants such as
pesticides and PAHs under UV light, achieving over 80% degradation
efficiency [94].

6.2.2. Stabilized nZVI for DDT removal

nZVI stabilized with CMC has shown effective removal of organic
contaminants like DDT, with 25% removal from the soil within
72 h [95].

6.3. Advantages and Challenges [96]

6.3.1 Advantages
6.3.1.1. High efficiency

NPs offer high removal efficiencies for a wide range of contaminants.

6.3.1.2. Cost-effectiveness
NP-based methods can be more cost-effective than traditional
remediation techniques.

6.3.1.3. Environmental friendliness
These methods are environmentally friendly, causing minimal
disruption to soil structure and fertility.

6.3.2. Challenges [97]

6.3.2.1. Potential toxicity

The environmental and health impacts of NPs themselves need careful
assessment to avoid secondary contamination.
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6.3.2.2. Scalability
Large-scale application of NPs for soil remediation requires further
research and development.

6.3.2.3. Stability
Ensuring the stability and longevity of NPs in soil environments is
crucial for sustained remediation.

7. POTENTIAL RISKS AND ENVIRONMENTAL IMPACT

While NPs offer significant advantages for soil remediation, their
environmental impact and potential risks cannot be overlooked. The
unnecessary build-up of NPs in the environment can lead to toxicity in
plants and other organisms. Understanding the post-treatment behavior
of NPs and their movement in ecosystems is crucial. Strategies for the
safe design, application, and disposal of NPs must be developed to
mitigate these risks [98,99].

8. CONCLUSION

NPs provide innovative solutions for the remediation of HM-
contaminated soils through various physicochemical and biological
mechanisms. Their unique properties make them highly effective in
reducing the toxicity and mobility of contaminants. However, careful
consideration of their environmental impact and potential risks is
essential for sustainable application. Further research is needed to
optimize NP-based remediation techniques and ensure environmental
safety.
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